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Motion Prediction and Pre-Rendering at the Edge to Enable
Ultra-Low Latency Mobile 6DoF Experiences

Xueshi Hou, Student Member, IEEE, Sujit Dey, Fellow, IEEE
As virtual reality (VR) applications become popular, the desire to enable high-quality, lightweight, and mobile VR can potentially

be achieved by performing the VR rendering and encoding computations at the edge and streaming the rendered video to the VR
glasses. However, if the rendering has to be performed after the edge gets to know of the user’s new head and body position, the
ultra-low latency requirements of VR will not be met by the roundtrip delay. In this paper, we introduce edge intelligence, wherein
the edge can predict, pre-render and cache the VR video in advance, to be streamed to the user VR glasses as soon as needed. The
edge-based predictive pre-rendering approach can address the challenging six Degrees of Freedom (6DoF) VR content. Compared
to 360-degree videos and 3DoF (head motion only) VR, 6DoF VR supports both head and body motion, thus not only viewing
direction but also viewing position can change. Hence, our proposed VR edge intelligence comprises of predicting both the head and
body motions of a user accurately using past head and body motion traces. In this paper, we develop a multi-task long short-term
memory (LSTM) model for body motion prediction and a multi-layer perceptron (MLP) model for head motion prediction. We
implement the deep learning-based motion prediction models and validate their accuracy and effectiveness using a dataset of over
840,000 samples for head and body motion.

Index Terms—Virtual reality, video streaming, six Degrees of Freedom (6DoF), edge computing, edge intelligence, motion prediction.

I. INTRODUCTION

VIRTUAL reality (VR) systems have triggered enormous
interest over the last few years in various fields in-

cluding entertainment, enterprise, education, manufacturing,
transportation, etc. However, several key hurdles need to
be overcome for businesses and consumers to get fully on
board with VR technology [1]: cheaper price and compelling
content, and, most importantly, a truly mobile VR experience.
Of particular interest is how to develop mobile (wireless
and lightweight) head-mounted displays (HMDs), and how to
enable VR experience on the mobile HMDs using bandwidth-
constrained mobile networks, while satisfying the ultra-low
latency requirements.

Currently, there are several categories of HMDs [2]: PC
VR, standalone VR, and mobile VR. Specifically, PC VR
has high visual quality with rich graphics contents as well
as high frame rate, but the HMD is usually tethered with
PC [3], [4]; standalone VR HMD has a built-in processor and
is mobile, but may have relative low-quality graphics and low
refresh rate [5], [6]; mobile VR is with a smartphone inside,
leading to a heavy HMD to wear [7], [8]. Therefore, current
HMDs still cannot offer us a lightweight, mobile, and high-
quality VR experience. To solve this problem, we propose an
edge computing based solution. By performing the rendering
on an edge computing node and streaming videos to users,
we can complete the heavy computational tasks on the edge
computing node and thus enable mobile VR with lightweight
VR glasses. The most challenging part of this solution is
ultra-high bandwidth and ultra-low latency requirements, since
streaming 360-degree video causes tremendous bandwidth
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Fig. 1. Illustration of rendering and streaming pipeline to show how
our predictive pre-rendering approach reduces latency: (a) Without
encoding and decoding; (b) With encoding and decoding.

consumption and good VR user experiences require ultra-low
latency (<20ms) [9], [10].

Specifically, the total end-to-end latency of edge computing
based VR system includes the following parts: time to transmit
sensor data from HMD to edge computing node, time to
render (and encode) on the edge node, time to transmit
rendered video from the edge computing node to HMD, and
time to (decode and) display the view on the HMD. The
encoding and decoding are optional according to the specific
application design. Once the user moves his/her head or body
position, high-quality VR requires this end-to-end latency as
less than 20ms [9], [10] to avoid motion sickness. For the
edge computing based VR system, it is extremely challenging
to meet this requirement.

Motivated by the ultra-low latency requirement challenge,
in this paper, we introduce edge intelligence for mobile VR,
wherein the edge can predict, pre-render and cache the VR
video in advance, to be streamed to the user VR glasses
as soon as needed. Specifically, we consider six Degrees of
Freedom (6DoF) VR experiences, which support both the
head and body motions, thus both the viewing direction and
viewing position can change. Hence, in order to pre-render
the view, edge intelligence is needed to predict both the
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Fig. 2. Field of view (FOV) in a 360-degree view.

head and body motions of a user accurately. By predicting
head and body motion of users in the near future with edge
intelligence, we can do a predictive pre-rendering on the
edge computing node and then stream (even pre-deliver) the
predicted view to the HMD. The difference betweenstream
andpre-deliveris thatstreammeans holding the pre-rendered
frame until determining whether prediction is 'correct' or not
using the actual motion, whilepre-deliver refers to sending
the pre-rendered frame immediately to the user without this
determination. Note that bothstreamand pre-deliverchoices
can signi�cantly reduce latency: one does pre-rendering and
the other does both pre-rendering and pre-delivery. The latter
reduces more latency than the former but (i) needs a technique
on HMD to buffer the predicted view and determine whether
the predicted viewing position and direction are correct; (ii)
transmits extra content when the prediction is inaccurate,
leading to more bandwidth consumption. Hence, we adopt the
former method, where the latency can be signi�cantly reduced
since the pre-rendered view will be transmitted if the predicted
viewing position and direction are 'correct' (i.e., the error is
less than a given ultra-low value); otherwise, latency remains
the same with traditional streaming method because the actual
view will be rendered and transmitted to the HMD. Fig. 1
illustrates the latency reduced by our pre-rendering approach
compared to the traditional approach, in terms of rendering
and streaming pipeline (from edge computing node to HMD).
The key to achieving this ef�cient edge-based predictive pre-
rendering approach is predicting body and head motion in
advance accurately, and then pre-rendering the predicted view
accordingly.

In our earlier work [11], we proposed techniques for head
motion prediction in 360-degree videos and three Degrees of
Freedom (3DoF) VR applications. In this work, we address the
more challenging 6DoF VR content. Compared to 360-degree
videos and 3DoF (head motion only) VR, 6DoF VR supports
both head and body motions, thus not only viewing direction
but also viewing position changes. Hence, our proposed VR
edge intelligence has to comprise of predicting both the head
and body motions of a user accurately using past head and
body motion traces. Speci�cally, for head motion prediction
in 360-degree videos and 3DoF VR, a certain prediction error
is allowed, because the error can be handled by delivering
a larger �eld of view (FOV) with high quality or rendering
larger FOV. Note that FOV is around 90� � 90� for Samsung
Gear VR and 110� � 110� for HTC Vive while the 360-degree
view is 360� � 180� in size (as is shown in Fig. 2). Compared
to 360-degree videos and 3DoF VR, the motion prediction in
6DoF VR is much more challenging, where the body motion

prediction needs high precision to pre-render the user's view
(otherwise may cause dizzy feeling). For 360-degree videos
and 3DoF VR, the 360-degree view at a time point is known
and unchanged by any head motion, but for 6DoF VR it can
be totally different due to the body motion. Therefore, this
paper will explore the feasibility of doing motion prediction
with high precision in 6DoF VR using edge intelligence, and
its main contributions can be summarized as follows:

� For 6DoF VR applications, we propose a newedge-based
predictive pre-renderingapproach involving both body
and head motion prediction, in order to enable high-
quality, lightweight, and mobile VR with low latency.

� We develop a prediction method using edge intelligence
to predict where a user will be standing (i.e., viewing
position) and looking into (i.e., viewing direction) in the
360-degree view based on their past behavior. Using a
dataset of real head and body motion traces from VR
applications, we show the feasibility of our multi-task
long short-term memory (LSTM) model for body motion
prediction and multi-layer perceptron (MLP) model for
head motion prediction with high precision.

� We propose a FOV selection technique for pre-rendering
a larger FOV to further reduce head motion prediction
error, and a motion error determination technique as
the system mechanism of our edge-based predictive pre-
rendering approach.

� To the best of our knowledge, we are the �rst to come
up with this edge-based predictive pre-rendering idea
using edge intelligence for 6DoF VR applications and
show good results on a real motion trace dataset in the
VR applications. We demonstrate the potential of our
approach with high accuracy of head and body motion
prediction.

Note that a preliminary version of our work has been
published in [12], where we reported on edge-based predictive
single-task models for head (MLP model) and body (LSTM
model) motions, and some preliminary results. In this article,
we develop (i) a new multi-task LSTM model for body motion
prediction to reduce body motion prediction error, (ii) head and
body motion prediction based FOV selection for pre-rendering,
such that the selected FOV minimizes the effects of motion
prediction error while also minimizing the selected FOV size,
and (iii) motion error determination as the system mechanism
of our edge-based predictive pre-rendering approach. Note that
the methodology proposed in this paper applies to single-user
scenarios, and we plan to further study more complex multi-
user scenarios as part of future work.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents a system overview
and problem de�nition. Section IV describes our dataset. The
methodology for head and body motion prediction is described
in Section V. We present our experimental results in Section VI
and conclude our work in Section VII.

II. RELATED WORK

In this section, we review current work in the following
topics related to our research.
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Enable High-Quality Mobile VR: Some recent stud-
ies [13]–[17] explore solutions to enable lightweight and
mobile VR experiences, and improve the performance of the
current VR system. To provide high-quality VR on a mobile
device, [13] presents a pre-rendering and caching design called
FlashBack, which pre-renders all possible views for different
positions as well as orientations at each 3D grid point with a
density of 2-5cm, stores them on a local cache, and delivers
frames on demand according to current position and orien-
tations. This method may lead to high inaccuracy and over-
whelming storage overhead of pre-caching all possible views
(e.g., 50GB for an app). [14] introduces a parallel rendering
and streaming mechanism to reduce the add-on streaming
latency, by pipelining the rendering, encoding, transmission,
and decoding procedures. This method focuses on minimizing
streaming latency, thus the latency for rendering part remains
the same as the traditional rendering method. [15] presents
a collaborative rendering method to reduce overall rendering
latency by of�oading costly background rendering to an edge
computing node and only performing foreground rendering on
the mobile device. In contrast, our method proposes to pre-
render based on head and body motion predictions, reducing
the latency of rendering more drastically. To reduce latency
needed, [16] proposes to stream VR scenes containing only
the user's FOV and a latency-adaptive margin area around the
FOV. [17] aims to address the ultra-high bandwidth challenge
in high-quality mobile VR by adaptively reusing the redundant
VR pixels across multiple VR frames. The reason these
two methods cannot be applied to our scenario is that [16]
cannot address 6DoF VR content and [17] reduces network
transmission latency to some extent but also brings the larger
rendering latency.

Human Motion Prediction: Learning statistical models of
human motion are challenging due to the stochastic nature
of human movement to explore the environment, and many
works [18]–[22] propose methods to address it. Based on
classical mechanics, there are some studies [18]–[20] showing
the ef�ciency of linear acceleration model (Lin-A) by doing
motion prediction or estimation with an assumption of linear
acceleration, especially in a small time interval (e.g., order of
tens of milliseconds). [18] describes a good performance of a
simple �rst-order linear motion model for tracking human limb
segment orientation, and [19], [20] reveal acceptable results
when employing the linear model as a baseline to predict
human trajectory. Meanwhile, deep learning approaches [19]–
[22] for human body prediction have also achieved remarkable
accomplishments. Speci�cally, [19], [20] propose their LSTM
models to predict human future trajectories, but their models
aim to learn general human movement from a massive number
of videos and the corresponding precision of predicted position
does not achieve the requirement of pre-rendering in VR
scenarios. [21], [22] propose various recurrent neural network
(RNN) models for human motion prediction to learn human
kinematics from skeletal data. But these models are designed
to learn the patterns from a series of skeletal data and cannot
be applied to our VR scenarios directly.

Moreover, [11], [23]–[25] also explore the feasibility of
doing head motion prediction, however, head motion predic-

tion in 6DoF is quite different than 360-degree video (3DoF),
since in the latter, for each time point, the whole 360-degree
view displayed for viewers is �xed and more regularity and
pattern exist in their viewing directions. By learning viewers'
traces, for 3DoF applications, the models can well predict
the viewing position since at a certain time point, there are
always some areas attracting most attention and viewers are
more likely to look at them. Head motion in 6DoF is more
dif�cult to predict because both position and viewing direction
may continuously change, and there is a much larger virtual
space to explore for users. Therefore, the above approaches
cannot be used to address our scenario: we aim to explore
the high-precision human body and head motion prediction in
6DoF VR applications for pre-rendering.

Multi-task Learning: Multi-task learning aims to improve
learning ef�ciency and prediction accuracy for each task,
compared to training a separate model for each task. Some re-
cent studies [26]–[28] explore solutions to improve prediction
accuracy by learning multiple tasks from a shared represen-
tation, and formulate the multi-task learning problems which
involve joint learning of various regression and classi�cation
tasks with different units and scales. [26] shows that a shared
representation with multi-task learning can improve accuracy
on depth regression and instance segmentation over separately
trained single tasks because of cues from other tasks. [27]
presents that multi-task learning bene�ts and achieves better
results compared with single-task models on event detection
in social media by doing text analysis with Twitter datasets.
[28] proposes a multi-task RNN for simultaneous recognition
of surgical gestures with kinematic signals, and demonstrates
that the recognition performance improves with the multi-task
learning model compared with single-task models. The reason
why we cannot use above methods for body motion is that
most of these methods [26], [28] address computer vision
recognition problem instead of predicting variables ahead of
time and [27] considers event detection based on texts in social
media which also cannot be applied to body motion prediction
scenario. Our proposed multi-task model distinguishes from
the above methods by addressing the real-time body motion
prediction problem using real motion traces in the VR scenario
and aiming for an ultra-low prediction error.

III. SYSTEM OVERVIEW

In this section, we describe our system overview. In Fig. 3,
a user's head motion, body motion as well as other controlling
commands will �rstly be sent to the edge, which performs the
edge-based predictive pre-renderingapproach. Based on the
past few seconds of head motion, body motion and control data
received from the user, the edge device will do three things:
(i) perform motion prediction (motion prediction); (ii) do pre-
render based on the predicted viewing position and direction
(motion decisionandpre-rendering); (iii) cache the predicted
frames in advance. Later, if the predicted viewing position
and direction are 'correct' (i.e., the error is less than a given
ultra-low value), the cached predicted frames can be streamed
from the edge device to the HMD and displayed on HMD
immediately; otherwise, the actual view will be rendered by
the edge device and transmitted to the HMD. For the former
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Fig. 3. System overview.

case, latency needed will be signi�cantly reduced since the
view is pre-rendered and cached on the edge computing node
before it is needed; for the latter, latency remains the same
with the conventional method of streaming from the edge
computing node. Note that although the controller can affect
the rendered frame by pointing at a certain place to teleport in
virtual space, we do not need to predict for the new location
triggered by the controller, as in this case, users will expect
much larger latency than 20ms. We will describe motion
prediction, FOV selection, and motion error determination
(highlighted in green in Fig. 3) with more details in Section V.

Note that the edge device can be either a Mobile Edge
Computing node (MEC) in the mobile radio access or core
network, or a Local Edge Computing node (LEC) located in
the user premises or even his/her mobile device, connecting
to the HMD through WiFi or WiGig. While each of the above
choices has tradeoffs, this paper will not speci�cally address
these tradeoffs and select either MEC or LEC. Instead, we
focus on developing accurate head and body motion prediction
techniques, which can be used for the edge-based predictive
pre-rendering approach shown in Fig. 3, and will apply to
either of the edge device options.

Problem Statement:In each time point, the user can have a
speci�c viewing position and viewing direction, corresponding
to the body and head motion. Given previous and current
viewing directions and viewing positions, our goal is to predict
viewing direction and position for the next time point. After
rendering pixels based on predicted viewing position and di-
rection, frames can be further encoded to a video and delivered
to users. Speci�cally, we describe the problem formulation for
motion prediction below. The notations used in our approach
are described in Table I.

A. Problem Formulation

Trajectory Sequence:Spatiotemporal pointqt is a tu-
ple of time stamp t, viewing position b, and view-
ing direction h, i:e:; qt = ( t; b; h). The trajectory se-
quence from time pointtw to time point tw+ n � 1 is a
spatiotemporal point sequence, which can be denoted as
S(tw ; t t + n � 1) = qt w qt w +1 : : : qt w + n � 1 .

Thus, the problem can be formulated as follows:

TABLE I
NOTATIONS USED.

Notation Meaning

t Timestamp (time counted since application launches)

RT T Round-trip latency

(�; �;  ) Euler angles for head pose (pitch� , yaw � , roll  )

(x; y; z ) Position for body pose

~vhead Head motion speed (v� ; v� ; v )

~vbody Body motion speed (vx ; vy ; vz )

dhead Angular distance between actual and predicted head poses

dbody Distance between actual and predicted body positions

d� ; d� ; d dhead in �; �;  -axis

dx ; dy ; dz dbody in x; y; z -axis

� 1 ; � 2 Thresholds of acceptable head and body prediction errors

L i Objective loss function for individual taski

wi Weight for individual taski

L total Loss function for multi-task learning model

� h ; � v Horizontal FOV and vertical FOV

� 0
h ; � 0

v Selected new horizontal FOV and vertical FOV

nw Number of frames in a sliding window in FOV selection

d̂� , d̂� , d̂ Estimated value ofd� ; d� ; d in FOV selection

I 1 ; I 2 Two grayscale intensity images

I dif (i ) Difference between two intensity images for pixeli

Rdif Percentage of mismatched pixels

Ndif Number of pixels having difference in grayscale intensity

N f rame Total number of pixels per frame

- Input: a trajectory sequence from time
point tw to time point tw+ n � 1, i:e:,
S(tw ; t t + n � 1) = qt w qt w +1 : : : qt w + n � 1 ;

- Output: predicted spatiotemporal point[qt w + n at time
point tw+ n ;

In this paper, we aim to predict the viewing positionb and
viewing directionh for the next time point using current and
previous viewing positions and directions.

B. Time Analysis

In this subsection, we give an analysis of the time taken
for the various tasks of our proposed edge-based predictive
pre-rendering method, as shown in Table II. Speci�cally, we
can see that the latency for transmission from HMD to the
edge and from edge to HMD depends on the distance between
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Fig. 4. Illustration of two virtual applications and other settings: (a) Virtual Museum and (b) Virtual Rome; (c) Boundary ofwalkable area,
and coordinates for head and body motions.

TABLE II
TIME NEEDED FOR DIFFERENT PROCEDURES.

Procedure Time Needed
Transmission from HMD to edge Depends on distance

Rendering 5ms � 10ms
Encoding 3ms � 8ms

Transmission from edge to HMD Depends on distance
Decoding � 3ms

Motion Prediction & FOV Selection < 1ms

them. Since we predict the user view 11ms in advance (1
frame ahead, assuming 90 frames/second), we have adequate
time to (i) predict motion and do FOV selection (i.e.,< 1ms,
which is described in details in Section VI.D) and (ii) pre-
render the predicted view (i.e.,5ms � 10ms) in advance with
no additional latency, hence satisfying the ultra-low latency
requirement of 6DoF VR immersive experiences. The round-
trip transmission latency, latency of rendering, latency of
encoding, and latency of decoding can be denoted asRTT,
Trendering , Tencoding , andTdecoding respectively.

As for the conventional method, the latency without motion
prediction and pre-rendering is

RTT + Trendering + Tencoding + Tdecoding ;

where the lower boundary and upper boundary of latency are
RTT + 11ms and RTT + 21ms respectively. Thus, given
added round-trip transmission latency of around 9ms, the end-
to-end latency for conventional method is20ms � 30ms.

For our proposed edge-based predictive pre-rendering ap-
proach, the latency with 'correct' motion prediction is

RTT + Tencoding + Tdecoding ;

where the lower boundary and upper boundary of latency
are RTT + 6ms and RTT + 11ms respectively. Otherwise,
when the motion prediction is not 'correct', the latency is the
same with conventional method. Thus, given added round-
trip transmission latency of around 9ms, the end-to-end la-
tency for the proposed edge-based predictive pre-rendering
approach is15ms� 20ms with 'correct' motion prediction and
20ms � 30ms with 'incorrect' motion prediction. We present
experimental results in Section VI which shows high accu-
racy of our proposed motion prediction techniques, achieving
'correct' motion predictions in most of the time points during
6DoF VR applications.

IV. DATASET AND ITS CHARACTERISTICS

In this section, we �rst describe the dataset we use and
then show characteristics of the dataset using certain metrics
we de�ne.

TABLE III
EXPERIMENTAL SETTINGS FOR DIFFERENT SESSIONS IN THEV IRTUAL

MUSEUM AND V IRTUAL ROME.

Session
Virtual Museum (VM) Virtual Rome (RM)
VM1 VM2 VM3 RM1 RM2 RM3

With Guidance 4 4
Use Controller 4 4

A. Dataset
To investigate head and body prediction in 6DoF VR appli-

cations, we conduct our study on a real motion trace dataset
we collected from 20 users using HTC Vive to experience
two 6DoF VR applications called Virtual Museum [29] and
Virtual Rome [30] in our laboratory. The system setup will
be described in Section VI.A. The trace consists of 840,000
sample points of head and body motion data collected from the
users. Fig. 4(a)(b) show the illustration of the two virtual ap-
plications, where Virtual Museum has three exhibition rooms
and Virtual Rome contains larger space including different
courtyards and halls. Thewalkable areais restricted by the
size of the tracked space in the room and constrained to a
�xed regular shape. Users can explore each virtual space by
walking in thewalkable areaor teleporting by pointing at a
place with a controller. The top subplot in Fig. 4(c) uses light
blue lines to show the boundary of thewalkable areain the
VR. As shown in Table III, we set three sessions respectively
for each application: (i) in session 1, users are given rough
guidance of taking a stroll about the room at the beginning of
the session, without a controller in their hand; (ii) in session
2, users walk around freely in the room, without a controller
in their hand; (iii) in session 3, users walk around freely in the
room and have a controller in their hand; the controller allows
them to teleport to any position in virtual space by pointing at
that place, and the position of thewalkable areain VR also
changes accordingly.

Motion traces include the user ID, session timestamp, euler
angles for the head pose (pitch� , yaw � , roll  ), and position
for body pose (x, y, z). The session timestamp refers to the
time counted since application launches in milliseconds, and
timestamps appear each 11ms (corresponding to 90Hz, which
is the refresh rate of HTC Vive). The middle and bottom
subplots of Fig. 4(c) exhibit the coordinates for head pose
using euler angles and for body pose using position.

B. Dataset Characteristics

To depict key characteristics of the head motion and
viewpoint changes in the dataset quantitatively, we offer the
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