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ABSTRACT We propose a system that estimates people’s body and head orientations using low-resolution
point cloud data from two LiDAR sensors. Our models make accurate estimations in real-world conversation
settings where subjects move naturally with varying head and body poses, while seated around a table.
The body orientation estimation model uses ellipse fitting while the head orientation estimation model
combines geometric feature extraction with an ensemble of neural network regressors. Our models achieve
a mean absolute estimation error of 5.2 degrees for body orientation and 13.7 degrees for head orientation.
Compared to other body/head orientation estimation systems that use RGB cameras, our proposed system
uses LiDAR sensors to preserve user privacy, while achieving comparable accuracy. Unlike other body/head
orientation estimation systems, our sensors do not require a specified close-range placement in front of the
subject, enabling estimation from a surveillance viewpoint which produces low-resolution data. This work
is the first to attempt head orientation estimation using point clouds in a low-resolution surveillance setting.
We compare our model to two state-of-the-art head orientation estimation models that are designed for high-
resolution point clouds, which yield higher estimation errors on our low-resolution dataset. We also present
an application of head orientation estimation by quantifying behavioral differences between neurotypical
and autistic individuals in triadic (three-way) conversations. Significance tests show that autistic individuals
display significantly different behavior compared to neurotypical individuals in distributing attention
between conversational parties, suggesting that the approach could be a component of a behavioral analysis
or coaching system.

INDEX TERMS Autism spectrum disorder, body orientation, head orientation, LiDAR sensor, point cloud,
triadic conversation, triadic interaction

I. INTRODUCTION

BODY and head orientation estimation are fundamental
challenges in computer vision, mainly investigated in

the context of pedestrian protection and movement prediction
[1], along with applications in robotics [2] and behavior anal-
ysis [3]. Most work on body and head orientation estimation
uses RGB cameras for their low cost and prevalence [3],
[4], but more expensive RGB-D cameras such as Microsoft
Kinect and Intel RealSense have also been used [5], [6].
However, use of RGB cameras raises privacy concerns in
many cases. Studies suggest that people’s concerns over
privacy have been increasing, with privacy protection mech-
anisms getting more attention [7], [8]. We propose a system

that uses point cloud data from LiDAR sensors to estimate
body and head orientations while protecting user privacy.
While depth maps also preserve privacy, most common depth
sensors are RGB-D that record color information as well,
whereas LiDAR solely outputs depth, making it a more
privacy-safe device [9]. There has been increased adoption
of LiDAR sensors with declining costs [10]. Many recent
projects in different fields such as healthcare [9], [11], secu-
rity, and surveillance [12], [13], have adopted LiDAR sensors
over privacy invading alternatives. With recent advances in
LiDAR technology and big data management systems that
enable data scalability [14], they are likely to become more
prevalent in stores, workplaces, and hospitals.
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FIGURE 1. System overview.

Available depth image-based models using RGB-D sen-
sors or LiDAR seemed to be good candidates for our need to
estimate body and head orientation. However, these models
require the sensor to be placed in front of the person, with
specific optimal ranges for distance and height, which we
refer to as a frontal setting. In contrast, our system does not
require the subject to appear head-on in front of the sensor.
Our sensors are placed near the ceiling, looking down at
about 45 degrees, and the subject can have arbitrary orienta-
tion in the conference area; we refer to this as a surveillance
setting. Our models for body and head orientation estimation
with LiDAR sensors are the first that permit a surveillance
viewpoint.

In general, surveillance settings produce low-resolution
data; a subject farther from the sensor is represented with
fewer points in a point cloud or fewer pixels in an RGB
image. Especially for head pose estimation, most models
[15], [16] use high-resolution 3D scans of the head, taken
by a sensor close to the subject. With such a setting, it is
possible to capture small facial geometric details of the nose
tip, eye holes, and chin, which can play a huge role for
orientation estimation. While those models are successful for
high-resolution data, they face challenges in our case, as our
sensors are unobtrusively distant from the people, and it is
difficult to identify small facial geometry features due to the
decreasing resolution and increasing noise with distance.

Being able to work with low-resolution data is essential for
models targeting a surveillance setting. For example, pedes-
trian protection applications that aim to detect pedestrians
and predict their movements from a surveillance viewpoint
or from a sensor mounted on a vehicle would benefit from
a system that enables estimations from low-resolution data
[1], [17]. Similarly, Chen et al. [3] proposed a head and body
orientation estimation model to analyze and predict behaviors
in public spaces such as airports, which could be useful for
public safety. Various other studies proposed leveraging head
orientation estimation systems for attention and interaction
modeling, for instance in museums to analyze which art-
works are getting more interest [18] or in shopping centers
to gauge which products are attracting more customers [19],
or in work environments to analyze social interactions [20].

In this paper, we also present an application of our head
and body orientation estimation models. Multiple studies
[21], [22] have shown that head orientation is a good indica-

tor of visual focus of attention, without the need to estimate
gaze orientation. Body and head orientation and movement
provide important means of nonverbal communication for
fluent social interaction. Individuals with social communica-
tion differences (for example, some individuals with Autism
Spectrum Disorder (ASD)) might not regularly provide nor-
mative nonverbal communication cues, such as periodically
making eye contact with a speaker and maintaining a body
orientation generally towards them [23]. Differences from
society’s workplace communication norms are one reason
that high-functioning young adults with ASD have high un-
employment rates [24] despite often holding college degrees,
average to high IQs, and various useful skills. Furthermore,
it was found that many autistic people were terminated from
jobs due to communication differences [25].

To analyze behaviors related to body and head orientation,
we use a triadic (three-way) conversation setting with two
interviewers and one subject sitting around an oval confer-
ence table. Triadic conversations are common in professional
and social settings and they are harder to navigate compared
to dyadic (two-way) interactions [26]. While some autistic
individuals may find it challenging to show attention in a
dyadic interaction with potential distractions such as objects,
a triadic interaction involves an additional person who is a
part of the conversation and may require attention. Adjusting
body and head orientation in triadic settings is important to
engage with both of the other people and make everyone feel
included in the conversation [27].

In triadic interactions, some individuals with ASD tend to
fixate on one person while ignoring the other for some time
[28], a non-normative distribution of attention which could
be seen as non-inclusive or socially inappropriate. Other
neurodivergent behaviors commonly displayed by autistic
individuals include not making eye contact with any of
the interviewers while speaking, or not paying attention to
a speaker while listening [29], [30]. Our body and head
orientation estimation system can quantify such behavioral
differences between autistic and neurotypical individuals. We
plan to extend our system to provide coaching and feedback
to autistic individuals, imitating the coaching advice of a pro-
fessional behavioral coach, with the motivation of supporting
autistic individuals in practicing conversational engagement
skills in preparation for job interviews and workplace com-
munications [31], [32].
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Our main contribution in this paper is the development of
novel body and head orientation estimation models specifi-
cally designed to work with low-resolution point cloud data,
generated by two indoor LiDAR sensors from a surveillance
viewpoint. Fig. 1 shows the system overview. A preliminary
version of this work [31] estimated head yaw angle using a
limited set of body and head poses involving a motionless
subject with a straight body, lowered arms, and a head pose
with no roll or pitch rotations. The current work, enhancing
the model in [31], is able to estimate orientations while the
subject moves naturally and displays various body and head
poses. The enhanced model can estimate yaw with similar
accuracy even in the presence of roll and pitch rotations. To
the best of our knowledge, our head orientation estimation
model is the first to estimate orientations from a surveillance
viewpoint (low resolution), using LiDAR sensors. Our sec-
ond contribution in this work is quantifying differences in
orienting behavior between neurotypical and autistic indi-
viduals using an automated system. Although some of these
differences are generally known to characterize ASD, we are
the first to quantify them using an automated system, and the
first to quantify them in a triadic conversation setting.

The rest of this paper is organized as follows. Section II
presents an overview of existing literature on body orienta-
tion estimation, head orientation estimation and orientation
behavior analysis of autistic individuals. Section III explains
our data collection, labeling and cleaning procedures. Sec-
tion IV presents our methodology starting from data pre-
processing and correction, detailing our body orientation
estimation procedure as well as our feature extraction and
machine learning approach for head orientation estimation.
Section V presents the performance of our models in terms
of MAE and the comparison with the state-of-the-art. Section
V also presents an application of our models where we show
significant differences between neurotypical and autistic in-
dividuals in terms of orientation and attention distribution
behavior. Section VI concludes with a discussion of the
current work and our future directions.

II. RELATED WORK
Body and head orientation estimation are well studied tasks
in computer vision. In this section, we categorize related
work according to the data types (RGB images or depth
maps/point clouds) as well as the experiment setting (frontal
or surveillance). We then introduce a few studies that analyze
and compare orienting behaviors of neurotypical and autistic
individuals in similar experimental settings.

A. BODY ORIENTATION ESTIMATION
Among the many RGB image-based models for body ori-
entation estimation which are generally in the context of
smart vehicles and robotics for human-robot interactions,
there are a few which match our type of surveillance setting.
Chen et al. [3] proposed a semi-supervised model on RGB
images to analyze behavior and attention based on estimated
body and head orientations of people waiting for luggage in

an airport. The authors of [33] and [34] proposed template
matching models that combine 2D images from multiple
surveillance viewpoints to make 3D orientation estimates.
Studies targeting pedestrian orientation [35], [36] usually
approach the problem as a classification task, providing less
precision compared to regression models. Many studies such
as [37], [38] incorporated motion information and tracking
techniques into their models as they approach the task from
the perspective of a vehicle. The authors of [4], [39] proposed
models to estimate body orientation for human-robot interac-
tions, which resemble a frontal setting.

The authors of [18] proposed a person-tracking system
with a body orientation estimation feature using depth sen-
sors from surveillance viewpoints. The authors use Principal
Component Analysis (PCA) on projected point clouds to
estimate body orientation. Other than [18], the works on body
orientation estimation using depth sensors do not use surveil-
lance scenarios. Shimizu et al. [40] proposed a model which
combines shape and motion information using a LiDAR-
mounted robot. Similarly, [41] combines Histogram of Ori-
ented Gradient (HOG) features with motion information
tracked by a Kalman filter, using depth images from a Kinect
sensor. Other studies use depth along with color information;
[42] enhanced features extracted from an RGB image using
depth and motion information, while [43] combined features
extracted from both RGB and depth images. Experimenting
with different CNN architectures that use RGB input, depth
input and RGB-D input, authors of [2] argued that depth
maps are more suitable for estimating orientation than RGB
images.

B. HEAD ORIENTATION ESTIMATION
Many papers estimate all three Euler angles (yaw, pitch,
roll) to define a full head pose [5], [6]. Depending on the
application, such as behavior prediction on pedestrians [3],
[36], pitch and roll angles are often neglected as yaw angle
defines the direction people are looking. For our application
on the division of attention between two other people in a
triadic conversation, we likewise focus on yaw angle.

As with body orientation, the majority of models in the
literature use RGB images, but some use depth, and only a
few consider the task in a surveillance setting. Before deep
learning techniques, good results were achieved by [44],
[45] using graph embedding, manifold learning and locally
linear embedding techniques. Zhao et al. [46] used a neural
network followed by more complex architectures such as
random regression forests [47], deep neural networks [48],
[49], convolutional neural networks (CNN) [50]–[52] and
Graph-CNNs [53]. The authors of [54], [55] proposed a tech-
nique called web-shaped model to estimate head orientation
using 68 facial landmarks which are detected using [56]. A
recent study by Yao et al. [57] showed that state-of-the-art
performance can be achieved by using only seven of those
68 landmarks, four of which are the corners of the eyes. All
these papers target a frontal setting. The authors of [3], [58]
created various models and surveillance settings for the head
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orientation estimation task using RGB cameras, as the latter
took advantage of extensive research on face detection in a
room surveyed by four cameras creating multi-view repre-
sentations. The authors of [1] proposed RGB image based
head orientation estimation models, to ensure pedestrian
safety from the perspective of a vehicle. Similarly, a CNN-
based model in [36] estimated pedestrian orientations from a
surveillance viewpoint. While proposing a transfer learning
approach, the authors of [59] published the DPOSE dataset,
a dynamic, multi-view head pose dataset collected in a room
with 4 cameras at surveillance viewpoints. Various papers
[60], [61] proposed new methods and published results on
the DPOSE dataset. A CNN-based model in [62] works on
unconstrained RGB images, similar to a surveillance view-
point with higher resolution.

Head orientation estimation using depth cameras has a
longer history (see [63]) compared to body orientation es-
timation using depth cameras. Following the availability of
consumer-level depth cameras such as Microsoft Kinect and
Intel RealSense, various head orientation estimation mod-
els using depth images [5], [6], [15], [16], [64]–[66] were
proposed. The BIWI benchmark [5] contains around 15000
samples of head poses recorded with a sensor placed frontally
about 1 meter from the subjects, and it was used for many
results [6], [15], [16], [53], [60], [67]. A particle swarm
optimization approach was used in [16], while [15] used
triangular surface patches as hand-crafted 3D features to
estimate orientation. More recent papers such as [6], [67]
proposed CNN architectures to tackle the problem; [67]
resembles our work as their model uses 3D point clouds
as input as opposed to the more common 2D depth maps.
Point clouds were also used in [68] which leveraged the
PointNet++ architecture [69] by using its abstraction layers
as a feature extractor, and they further improved their work by
including temporal information using an LSTM network in
[70]. Similar to the depth information based body orientation
estimation models, the models listed above assume that the
depth sensor is directly in front of the person.

To our knowledge, we are the first to estimate head orien-
tations using a depth sensor from a surveillance viewpoint.
Existing models use either RGB images with a surveillance
setting, or use depth images with a frontal setting. In this
study, we propose models for both body and head orientation
estimation.

C. ANALYSIS OF ORIENTATION BEHAVIOR
A core diagnostic feature of ASD is differences in social
attention [71], which include social orienting, joint attention,
eye contact, and non-verbal gestures. In this section of our
literature review, we mainly focus on orientation behavior,
specifically in triadic settings.

As suggested by [72], early triadic behaviors are im-
portant for the development of later social responsiveness.
The authors of [28] studied triadic conversations with low
communicative intent (researchers speaking primarily with
each other, with occasional input from a child) and dyadic

conversations with high communicative intent (a researcher
directly interacting with a child) and found that children
with ASD made 57% more gaze fixations to people’s faces
in these triadic conversations compared to the dyadic ones;
the reverse pattern was found for typically developing (TD)
children. The authors also found that children with ASD
spent 12.3% less time looking at other people’s faces in these
triadic conversations compared to the dyadic ones, and 9.7%
less compared to TD children.

Other studies such as [73], [74] with different experimen-
tal settings also provide insight into orienting behaviors of
people with ASD. The authors of [73] found that children
with autism were significantly less likely to respond to social
stimuli (such as calling the child’s name, or snapping fingers)
with a re-orientation of the head, compared to their responses
to non-social stimuli (such as a phone ringing), as well
as compared to the responses of TD children. In a virtual
public speaking experiment, the authors of [74] found that
high-functioning children with ASD made contact with the
listeners less frequently compared to TD children.

A model to analyze head movement features such as rota-
tion range and frequency in autistic children during face-to-
face interactions was proposed in [75]. The authors reported
that compared to TD children, autistic children had a signifi-
cantly higher level of head movement stereotypy (repetitive,
ritualistic head movements), as well as higher rotation range
and frequency. Based on these results, the authors developed
a machine learning model to diagnose autism in children
using the proposed head movement features [76].

Many researchers have studied social modulation of gaze,
which is the change in gaze orientation based on conversa-
tional role (e.g., speaker or listener). In dyadic conversations,
listeners generally gaze more at speakers compared to speak-
ers looking at listeners [77], [78]. However, [78] found that in
group conversations, the gaze levels of speakers come close
to that of listeners. The authors argued that one reason for this
change was that speakers, when addressing a group, need to
collect visual feedback from each individual and to maintain
the signal that they are addressing each individual.

III. DATA SETS
Our system uses two ToFv2 LiDAR sensors from Hitachi
Vantara [79]. The sensors capture depth information and
create a point cloud based on the Time-of-Flight principle
[80]. We placed sensors at opposite ceiling corners in a
3x3.5 meter conference room, looking down on an oval table.
The point clouds are stitched together using rotation and
translation. For both the static and conversation datasets,
we ensured with calibration tests that the sensor positions,
orientation angles and stitching parameters are the same
before each data collection session for data reliability. For
the static dataset, the sensors were manually calibrated by
visual inspection of the output point clouds. We refined the
calibration procedure for the conversation dataset using the
fixed locations of four pieces of reflective tape that provide
stronger sensor signal. We use the sensor software’s built-in
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human detector which outputs XY-coordinates of the center
of gravity of the detected human, as well as a Z-coordinate of
the top of the head, Zhead. In this section, we present our data
collection, labeling and cleaning procedures. This study was
approved by the UC San Diego Institutional Review Board
(Protocol 210775, Date 7/1/2021).

A. STATIC DATASET
In [31], we created a static dataset from 15 neurotypical
adults with and without glasses and face masks, and with
varying hairstyles and heights. Our dataset consisted of 8
male and 7 female subjects with an average age of 26.2. We
collected data with one subject at a time, while the subject
follows guidance arrows (as ground truth) placed on a table.
Each subject orients their head towards 13 predetermined
angles (-90 to +90 degrees, in increments of 15 degrees).
For capturing each point cloud, the subjects are instructed
to be motionless with their upper body straight to the front
and parallel to the table edge, and with their hands on the
table or on their lap. Point clouds corresponding to each head
orientation angle were captured one by one as snapshots,
rather than getting sampled from a continuous data stream.

B. CONVERSATION DATASET
While the static dataset was useful in the early stages of
model development, we found that a model trained on it
struggled to accurately estimate head and body orientations
of people engaged in real-world conversations, which involve
natural movement and varying head and body poses. To cre-
ate a dataset that represents natural aspects of a conversation,
we recorded conversations in a triangular conversational set-
ting with two interviewers and one subject. The subjects were
12 neurodivergent individuals who had received a community
diagnosis of ASD and 8 neurotypical individuals. The 12
autistic subjects consisted of 10 males and 2 females with
an average age of 22.1 while the 8 neurotypical subjects
consisted of 6 males and 2 females with an average age
of 23.6. Each subject participated in 2 sessions of 8 to 15
minutes in two different seating setups as shown in Fig. 2.
In Setup90, the interviewers are separated by an angle of
around 90 degrees (ranging from 75 to 105 across sessions)
from the subject’s perspective, whereas in Setup45, the
separation is around 45 degrees (ranging between 35 and 55
degrees). Different seating positions helped us collect data
with different head orientations, creating useful variety in the
dataset.

The subjects were asked to engage naturally as they would
in a casual conversation, and they were not informed prior
to the session that the data would be used to analyze head
and body orientation. The conversation starts with a casual
question such as “What do you do in your free time?”
and continues based on the answers of the subject. It is
intended that the subject is the main speaker throughout the
conversation, while the interviewers listen in an engaged
way, while also making brief comments, asking follow-up
questions, and shifting topics. The duration, pace, topics,

and conversational roles were controlled to the best extent
possible to prevent these external factors from confounding
the behavior analysis portion of the study. The interviewers
followed a conversation script reasonably closely so that each
participant was asked questions about the same set of topics,
in the same order. During the sessions, LiDAR point cloud
data were recorded with an average frame rate of 1.5 fps.
We also recorded RGB video solely for ground truth labeling
and not for model development. Unlike the static dataset,
in the conversational setting we observed many different
body poses by the subjects, such as turning their upper body
towards one interviewer, using their arms and hands as part
of their body language, and putting their hands close to their
face while thinking or listening.

C. DATA EXTRACTION AND LABELING
To create a dataset that contains various head poses that occur
during a real conversation, we manually sampled and labeled
data from the sessions. To manually estimate the ground truth
head orientation from video snapshots, we used 3 reference
orientations. Two of these are computed using the point cloud
centroid coordinates of the two interviewers with respect to
the subject, at the time of the snapshot. The third reference
angle is the average of the first two, representing the midpoint
of the two interviewers. For example, if one interviewer is
seated 30 degrees to the left of the subject, and the other
interviewer is seated 50 degrees to the right, the three ref-
erence angles are +30, -50 and -10 degrees. If the subject’s
head is oriented directly towards an interviewer, the ground
truth label is the reference angle for that interviewer. If the
subject is looking at the midpoint of the two interviewers
(a common situation when speaking to multiple listeners),
the ground truth label is the midpoint reference angle. The
manual sampling and labeling procedure is detailed below:

1) Align the RGB video and point cloud recordings based
on timestamps.

2) From the video recording, identify an instance where
the subject’s head orientation is static for at least two
seconds and close to a reference point.

3) Extract the point cloud data that corresponds to the
identified video instance.

4) Calculate the reference angles using the point cloud
coordinates of the subject and the interviewers.

5) Estimate the subject’s head orientation from the video
as ground truth, with the help of reference angles.

From this, we obtained 80 to 140 instances from each ASD
subject, totaling 1400 point cloud frames. We ensured a
variety of body and head poses in the dataset, including
challenging ones such as subjects with their hands on their
face or chin, arms over their head or their bodies heavily
leaning towards the table, the back or the sides. We also
tried to ensure that the frequencies of various different poses
within the dataset are reasonably close to how often each pose
is displayed by the subjects. We achieved this by sampling a
data point every time a subject shifts their pose (e.g. turns
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FIGURE 2. Conversation Setups

from one interviewer to the other, leans towards the table,
raises their arm, places their hands on their face etc.), and
sampling data points periodically (one sample every 10 to
15 seconds) if the subject’s pose is stable for longer periods.
Note that sampling a data point is only possible if there is an
instance where the subject’s head orientation is static for at
least two seconds and close to a reference point, as stated by
the second item in the above data sampling procedure. It is
also important to note that this process is done only once to
establish ground truth for creating the model, and should not
be construed as a calibration step needed in subsequent use
of the model.

This manual sampling and labeling is subject to potential
human errors. Estimating head orientation accurately from
a video is hard, although we sampled instances where the
subject’s head is oriented towards an interviewer or the
midpoint, which are relatively easier positions to interpret
the orientation. To quantify the human labeling error, we con-
ducted a simple experiment on three subjects. Using guidance
arrows to guide the subject to adjust their head orientation
in 5 degree increments, we collected a random sequence of
head orientations. On average, human labels based on video
recordings differed by about 4.5 degrees from the guidance
arrow ground truth. A portion of this error comes from the
subjects imperfectly aligning their heads with the guidance
arrows, which is a potential issue that exists in the static
dataset as well.

D. DATA CLEANING

Our dataset presented challenges in data cleaning. First, there
were issues caused by the sensors. Network overload dur-
ing real-time data collection caused lost point cloud frames
that were replaced by previously recorded frames, an issue
present in 3 of 24 data collection sessions. Of the 1400
point clouds manually sampled from the real-time sessions,
56 were excluded as they were sampled from a repetition
sequence and therefore did not reflect the true state of the
environment at the matched timestamp. Another LiDAR sen-
sor issue was the inaccuracy of the built-in human detection
algorithm. The sensor may confuse the subject’s shoulder
with their head, resulting in a wrong output of center of
gravity and Zhead. In that case, the wrong portion of the
human body is cropped out and the point cloud lacks points

from the other shoulder. We removed an additional 74 point
clouds due to this erroneous human detection. In Section
IV-B, our proposed head position estimation algorithm can
mitigate this issue. We also used our proposed algorithm to
detect the instances where this issue happened and eliminate
them if the discrepancy between the built-in head position
and our estimated head position is bigger than 10 cm either
in the horizontal plane or in the vertical axis.

Secondly, there are human errors during manual sampling
and labeling, such as selecting a wrong timestamp from the
video recording, or a slight lack of synchronization between
the video recording and point cloud sequence, leading to the
selection of the wrong point cloud frame. In such instances,
we observed that the next or previous point cloud is more
suitable for the suggested head orientation label, indicating
that the wrong point cloud was sampled and the subject’s
head orientation changed within consecutive frames. We
address this problem by using our model’s predictions on the
neighboring frames as a preliminary indication of a wrong
sampling or a synchronization issue, and replace the point
cloud with its neighbor if we can visually confirm the issue
from the video recording and point cloud sequence. In Fig. 3,
two consecutive point clouds from one of our data sequences
are shown. The human labeler originally sampled Fig. 3a
from the sequence, trying to match with the video instance
where the subject’s head was towards an interviewer seated
35 degrees to the subject’s left. However, due to a slight
synchronization issue, the point cloud in Figure 3a belongs
to the middle of the head movement towards that interviewer,
and the next point cloud (shown in Figure 3b) should have
been sampled instead. The head movement becomes apparent
when 4-5 consecutive point clouds are visualized on top of
each other and compared with the corresponding video se-
quence, which allows one to choose the point cloud matching
the intended orientation label. Of the remaining 1270 point
clouds, 41 were replaced by their neighboring point clouds
due to this labeling issue.

IV. METHODOLOGY
In this section, we present our data pre-processing steps and
body and head orientation estimation models. Section IV-A
details the modified noise removal algorithm from [31] and
Section IV-B presents a head position correction procedure
which led to improvements in model performance. Section
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IV-C presents our body orientation algorithm. Section IV-D
describes our hand-crafted geometric features and feature
elimination procedure while Section IV-E presents our head
orientation estimation pipeline.

A. PRE-PROCESSING
For this work, we introduced additional pre-processing steps
compared to our work in [31]. As explained in Section IV-B,
the built-in head height estimation is often inaccurate, so
we propose an improved estimation procedure to obtain the
head height, Zhead. To extract the region of interest which
consists of the upper body and head, we crop a cylinder-
shaped boundary around each person’s point cloud using the
centroid and a radius of 50 cm. For each subject, a threshold
for the upper body set empirically as the top 27% of their
height (in a seated position) is computed from our improved
estimated Zhead. We also removed points from the head point
cloud if they are at least 15 cm away from the head center
and from the upper body point cloud if they are at least
25 cm away from the body center on the horizontal plane,
after separating the head and upper body point clouds. The
computation of head and body centroids and the separation
of head and upper body point clouds are explained in Section
IV. With these additional steps, we were able to remove
points that did not belong to the region of interest and instead
belong to the table, the back of the chair, or noise, which
created many distortions in our preliminary work [31].

The upper body point clouds obtained from the pre-
processing step consist of about 1800 points on average,
varying between about 1500 and 2100 points per case. Since
our system is in a surveillance setting, our upper body point
clouds have lower resolution compared to other work, e.g.,
the BIWI dataset [5] contains around 10,000 points for a
person’s face alone. Estimating body and head orientation
from low-resolution LiDAR data is challenging due to the
lack of detail in the small region of interest. Moreover,
the point cloud data from the surveillance angle are noisy,
especially from hair and other complex features on the head.
To mitigate this, we apply a k-nearest neighbor noise removal
step, where we delete a point if the average distance between
the point and its 10 nearest neighbors is larger than 50 mm.
All the parameters and thresholds presented in this section
are treated as hyperparameters which were optimized during
the training of our head orientation estimation model. We
initialized each parameter based on our visual and statistical
analysis of the data, and optimized them for model perfor-
mance.

B. HEAD POSITION CORRECTION
Although the LiDAR’s built-in human detection capability
usefully extracts human point clouds from the environment
point cloud, it does not pinpoint the head center in the
horizontal plane as the center of gravity of the human is
not necessarily the same as their head center. The algorithm
also provides inconsistent results for Zhead. The two sensors
make independent estimates which are averaged to form a

joint estimate, which is usually better than relying on a
single sensor estimate. However if one sensor makes a large
estimation error, the joint estimation is not good enough to
recover. Accurate and consistent estimation of Zhead across
the whole dataset is especially important as it is used to
separate the head and upper body point clouds.

We improved the estimate of the head center and Zhead

from the point cloud. If Z1 and Z2 (in centimeters) represent
the built-in Zhead estimates for sensors 1 and 2, we use
Z = ((Z1 + Z2)/2)− 15 as the initial separation threshold;
points above this threshold belong to the head and points
below belong to the upper body. This yields two disjoint
point clouds, PChead and PCbody . We project the points
in PChead onto the horizontal plane and use least-squares
ellipse fitting on them, as detailed in the following section.
The ellipse center is a more accurate estimate of the head
center, compared to the built-in estimate from the LiDAR
sensors. Zhead is determined by sorting the points by their
z-coordinate and taking the highest point with a maximum
height difference of 1mm with the next 5 highest points. This
operation mitigates noise distorting the Zhead calculation,
and generally pinpoints the top of the head where the height
difference between points should be saturated. The head
center computed from the least-squares ellipse, together with
this Zhead, represent the center point of the subject’s top of
the head.

This improves our preliminary work [31], which relied
heavily on the built-in estimates. In [31], the inaccurate built-
in estimation for Zhead was used to base the separation
threshold to obtain PChead and PCbody , which sometimes
caused PChead to contain points from the shoulders or
PCbody to contain points from the chin.

C. BODY ORIENTATION ESTIMATION
The body orientation estimation model is a geometric model
which takes advantage of the ability to change the viewpoint
from which a point cloud is seen, and uses the birds-eye view
of the room. The cropped point clouds are projected onto the
horizontal plane. After estimating Zhead, we separate head
and body points using a refined threshold of Z = Zhead −
17.5 and calculate the 2D ellipse that best fits the projected
PCbody based on least squares error, with the long axis of the
ellipse representing the frontal (shoulder-to-shoulder) axis.
We use the conic representation of an ellipse:

E(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0 (1)

The optimal coefficients are estimated using the direct least
squares ellipse fitting method by Fitzgibbon et al. [81]. The
noise removal pre-processing is important for this procedure
to work well, as noise points that are generally on the edges
may result in large squared errors. The correction of the
built-in Zhead estimation is also crucial as explained in the
previous section.

After the frontal axis is determined, there remains the issue
of which side of the ellipse is the front. We calculate the
average perpendicular distance of each point in PChead from
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both sides to the frontal axis. Assuming that a person’s head
is almost always in front of their body (their frontal axis), the
front is taken as the side with higher average perpendicular
distance. In our datasets, this assumption holds true 99.7% of
the time and the front side is correctly determined.

FIGURE 3. Least squares ellipse fitting for body orientation estimation via
the long axis of the fitted ellipse, which also determines the four quadrants of
the head relative to the body. Light blue points are projected upper body
points (shoulders and chest); dark blue, red, purple and green points are
projected head points, representing the four quadrants, in order. The first and
second quadrants represent the front-left and front-right sides of the head,
respectively; while the third and fourth quadrants represent the back-left and
back-right sides of the head. (a) Head orientation label unknown; point cloud
belongs to a head movement that starts at 0 degrees and moves to the left
(b) Head orientation labeled as 35 degrees to the left.

D. FEATURE EXTRACTION AND SELECTION
For head orientation estimation, simple geometric ap-
proaches were not sufficient as details of facial features are
not accurately captured by the sensors. Therefore, we engi-
neered our own geometric features from the point clouds. The
surveillance setting allows low-level geometric features but,
given the low-resolution nature of our data, higher level 3D
features such as surface patches [5], [15] or curvatures [82]
did not produce useful results on our dataset. The approach
proposed in [68], using the initial layers of PointNet++ to
extract feature representations, or a Graph-CNN approach
proposed in [67] similarly did not suit our data. However, as
shown in our prior work [31] and the current study, our low-
level geometric features allow estimation of head orientation
with reasonable accuracy in a low-resolution surveillance
setting.

The feature extraction is done after noise removal and
ellipse fitting to the upper body. The upper body ellipse di-
vides PChead into four quadrants which produce supportive
features for the model, based on the point locations with
respect to the body center. Fig. 3 shows two projected human
point clouds, the optimal ellipse fit for body orientation
estimation, and the resulting four quadrants of the head for
each of the clouds.

The features we extract are the (x, y) coordinates of the
subject’s centroid in the sensor coordinate system, as well
as a number of features that use a subject-centric coordinate
system. These features are the principal components and the

basic distribution properties of the points in PChead (mean,
standard deviation, minimum and maximum coordinates), as
well as of the points in its four quadrants separately, the
estimated nose coordinates based on the centroid of the 10
furthest projected points from the head center, and the axis
lengths and orientations of a separate ellipse fitting procedure
on PChead. Some of the features we extracted emerged from
our initial ideas on how to achieve accurate head orien-
tation estimations. For example, the principal components
of the head point cloud and the furthest points from the
head centroid corresponding to the nose tip were two ideas
to directly estimate head orientations. While none of these
worked well on their own, they served well as features to
a more complicated model. The features extracted from a
single point cloud constitute a feature vector with 103 entries
(as x and y dimensions produce distinct features).

For a low-resolution regression task, a feature space with
over 100 dimensions presents a higher likelihood of overfit-
ting. To mitigate this, we use the Random Forest Recursive
Feature Elimination (RF-RFE) process [83] which involves
repeatedly training a random forest regressor, ranking the
features according to their importance, and eliminating the
least important feature(s) in each iteration. This approach has
been successfully used in many studies [84]–[86]. After ap-
plying RF-RFE , the optimal feature set had 42-dimensions,
with principal components proving to be important features
along with some engineered features such as the estimated
nose position and the head ellipse parameters. The feature
elimination procedure revealed that our two initial ideas
involving principal components and nose tip estimation were
among the most useful features. Other features in the optimal
feature set are a mix of head quadrant principal components
and distribution properties of the head point cloud in certain
dimensions. Intuitively, horizontal dimensions should hold
more importance compared to the vertical dimension since
we are estimating the head orientation in the yaw axis. Some
head quadrants turned out to be more important than others
based on where the sensors are located and their angles in
which they view the subjects.

E. HEAD ORIENTATION ESTIMATION
For head orientation estimation, we use a pipeline of feature
extraction and an ensemble of multi-layer perceptron-based
regression networks. To train the head orientation estima-
tion model, we use leave-one-out cross-validation, where
the point clouds of each subject are used one time as the
test set, and used in training otherwise. Thus each autistic
subject has their own model that has never seen that subject
before. Depending on the subject, each of the leave-one-out
models was trained using 1150 to 1200 point clouds from the
dataset and tested on 70 to 120 point clouds. On average, each
model was trained with 92% of our dataset. For neurotypical
subjects, we use a model trained with the whole dataset of
samples from autistic subjects.

We chose to use a neural network based regression model
as a result of experimentation with multiple different ap-
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TABLE 1. Conversation Dataset MAE for Head Orientation Estimation after each Data Cleaning and Processing Step

Process Mean Absolute Error on Conversation Dataset
Model Trained with Conversation Dataset Model Trained with Static Dataset

Initial Model (from [31] but trained as specified in column) 19.6 35.1
Head position correction (Sec. IV-A) 18.3 32.8

Removing repeated point clouds (Sec. III-D) 17.2 32.8
Removing point clouds with missing points (Sec. III-D) 15.9 29.5

Using neural network ensembles (Sec. IV-E) 14.2 26.4
Fixing wrongly synchronized point clouds (Sec. III-D) 13.7 26.4

proaches and algorithms. As discussed in Section IV-D, we
initially experimented with other proposed head orientation
estimation algorithms from the literature. After concluding
that the existing approaches are not suitable for our dataset,
we extracted our own features and experimented with mul-
tiple different machine learning algorithms such as SVM,
decision trees, random forests, gradient boosting and neural
network based regression. The latter performed best, with
random forest regression a close second. We used random
forest regression to measure feature importance as discussed
in Section IV-D.

Neural networks are typically high variance estimators,
as was our preliminary model [31]. A dataset of noisy
low-resolution point clouds leads to even more variance in
predictions. To reduce the estimation variance and improve
overall model performance [87], [88], we enhanced our initial
model by deploying an ensemble of neural networks, where
each individual network was initialized with different ran-
dom weights. Often, different initial weights are enough to
generate significantly different models [87], [88], to create
a diverse ensemble. To create the ensemble, we train 20
separate models and rank them based on their performance
on the validation set. Then we use Forward Subset Selection
[87] to select the models as follows. We start with an initial
ensemble of 3 best models, and iteratively add the next
best model in the pool to the ensemble until the ensemble
performance on the validation set does not improve with the
addition of a new model. We ended up with ensembles that
contain 3 to 8 models, with the mode and median being 6
models.

V. RESULTS

In this section, we discuss the performance of our proposed
models. Section V-A evaluates our models based on mean ab-
solute error (MAE). We present MAE values for our models
based on the number of features, the selected feature set and
an ablation study of each of the pre-processing steps. We also
compare our work to two state-of-the-art head orientation
estimation models, as well as other existing literature. Sec-
tion V-C introduces an application of our estimation models,
comparing attention distribution patterns of neurotypical and
autistic individuals in triadic conversation settings. We find
statistically significant differences between the two groups.

A. ERROR METRICS
We primarily use MAE to evaluate model performance. For
the body orientation estimation model applied to the static
dataset, with our proposed improvements, we achieve an
MAE of 5.21 degrees compared to the MAE of 8.37 degrees
reported in [31]. The model improved significantly with the
head position correction presented in Section IV-B. Our pro-
posed ellipse fitting method for body orientation estimation
outperforms the PCA approach proposed by [18], as the latter
produced an MAE of 7.95 on our dataset. We found that the
ellipse fitting approach is more robust against noise in the
point clouds.

We train and evaluate the head orientation estimation
model on data sampled from our new conversation dataset,
from 12 autistic subjects. We use a different model for each
subject, where data from the other 11 subjects are used for
training. On average, our new modeling approach produces
an MAE of 13.73 degrees across 12 leave-one-out models
for head orientation estimation. When the model from [31]
that was trained with only the static dataset is applied to
the 12 subjects on the conversation dataset, the MAE is
26.4 degrees due to the challenges caused by different body
poses and natural movements in real-world settings. Our new
model based on our conversation dataset outperforms our
model in [31] by about 50% in a conversational setting. In
[31], we reported an MAE of 12.69 on our experimental
static setting, showing that our new model is able to reach
similar levels of accuracy in a conversational setting. A more
detailed summary is presented in Table 1 which shows the
development of our final model as well as a comparison with
our initial model.

Fig. 4 shows the evolution of model performance (MAE)
as we eliminate features with the RF-RFE procedure de-
scribed in Section IV-D. Without RF-RFE, using the whole
feature space, the model performance would have been 13%
worse compared to the optimal feature set, with an MAE of
15.72 degrees. The MAE of the model with only 1 feature is
25.61 degrees, 46% worse than the optimal performance.

After obtaining the optimal feature set using the RF-
RFE procedure, we conducted some experiments to analyze
feature importance. Fig. 5 compares model performance in
terms of MAE with the optimal feature set and its subsets
in which certain features are excluded. The figure shows the
importance of engineered features, including the estimated
nose position, principal components of the head quadrants,
and parameters of the head ellipse.
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TABLE 2. State-of-the-Art Comparisons for Head Orientation Estimation

Model MAE on our dataset MAE on respective dataset
Proposed Neural Network Ensemble 13.7 -

PointNet++ Regression [68] 24.2 7.32 (MSE)
Graph-CNN PointNet++ [67] 23.5 1.82

HOG-SVM-HMM Pipeline [1] - 19
Coupled Adaptive Classifier [3] - 23.6
Multitask Manifold CNN [60] - 31

Face Detection-Naive Bayes-HMM [58] - 33.6

TABLE 3. Comparison of neurotypical and autistic subjects on two experimental setups

Statistic
Setup90 Setup45

ASD NT ASD NT
Average duration of contact 11.8 6.3 7.7 6.1

Maximum duration of contact 48.8 16.5 24.6 16.5
Average duration of NOT contacting anyone 53.2 41.1 58.6 30.9

Number of contacts per minute 0.84 1.37 1.44 2.15
Total duration of contact % during an interview 11.5% 13.4% 15.6% 16.6%

Maximum duration of exclusions 50.3 16.4 20.3 9.3
Number of exclusions per minute 0.28 0.10 0.19 0.11

Total duration of exclusions % during an interview 15.5% 4.2% 7.4% 3.1%

FIGURE 4. Evolution of mean absolute estimation error with the Random
Forest Recursive Feature Elimination procedure. The initial MAE with 103
features is 15.72 degrees, whereas the MAE with only 1 feature left in the
feature space is 25.61 degrees. The optimal feature set contains 42
features and leads to an MAE of 13.73 degrees.

B. COMPARISONS WITH STATE-OF-THE-ART

While some papers report smaller errors on head orientation
estimation, they use either high-resolution 3D scans of the
face when the sensor is placed directly in front of the person
[5], [6], [15], [16], [64]–[66], or an RGB camera [47]–[50].
But for those studies which used indoor RGB surveillance
datasets, MAE values of 19, 23.6, 31 and 33.6 degrees
were reported [1], [3], [60] and [58], respectively. While we
outperform the above studies which used RGB cameras from
surveillance viewpoints in terms of raw MAE numbers, it is

FIGURE 5. Performance of optimal feature set and its subsets (PC =
Principal Component).

hard to make exact comparisons as the datasets are not unified
and each dataset has its own challenges.

To make fair comparisons, we evaluate the performance
of two PointNet++ based state-of-the-art architectures on
our dataset. The architecture in [68] uses the set abstraction
layers of PointNet++ as feature descriptors followed by a
fully connected regression layer. The authors of [67] modi-
fied the PointNet++ set abstraction layers with a Graph-CNN
approach, proposing a cascaded classification and regression
architecture. Both of these architectures rely on PointNet++’s
ability of extracting local features from a point cloud. Since
these local features may not be easily identifiable in low-
resolution point clouds, these approaches did not work as
well on our dataset, producing MAE values of 24.2 and 23.5
degrees for [68] and [67], respectively.
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C. BEHAVIOR ANALYSIS OF AUTISTIC AND
NEUROTYPICAL INDIVIDUALS
In this section, we quantify some orienting behaviors of
autistic and neurotypical individuals in two experimental
triadic conversation setups, as shown in Fig. 2.

To quantify behaviors, we define the following two terms:
Contact and Exclusion. Based on studies that suggest “2 to
3 seconds" [89], [90] or “a few seconds" [91] of eye contact
is optimal when addressing multiple people to connect and
make them feel included in the conversation, Contact in
our context is defined as 3 consecutive frames where the
head orientation is inside the region of an interviewer, where
a frame is about 0.7 seconds and an interviewer’s region
is defined as ±15o from their position. Making occasional
contact with an interviewer is important to make them feel
included in the conversation [92] and maintain the signal
that they are being addressed [78]. Exclusion is defined over
a 20-frame window; if there are at least 15 estimated head
orientations in the region of one interviewer and none in the
region of the other, the other interviewer is considered to
be excluded from the conversation. In Table 3, we present
statistics related to Contact and Exclusion extracted from our
conversation sessions using our head orientation estimation
model. We present the averages for each statistic across 12
sessions with autistic subjects and across 8 sessions with
neurotypical subjects in each setup.

From Table 3, we observe that the orienting behaviors
of the autistic and neurotypical individuals diverge more in
Setup90, compared to Setup45. When the interviewers are
further apart, the autistic individuals have more difficulty
with distributing their attention between two conversational
partners. Neurotypical subjects tend to make contact with the
interviewers in shorter bursts, whereas autistic individuals
frequently dwell on one interviewer for a longer period of
time. With shorter and more frequent contacts, neurotypical
individuals are more likely to ensure that both interviewers
feel included in the conversation. Autistic individuals more
often have an exclusion, seen through the much higher max-
imum exclusion duration and total percentage of time spent
while an interviewer is excluded.

The authors of [74] suggested that children with ASD
made fewer contacts with listeners while speaking to multiple
people, compared to typically developing children. Similarly,
the authors of [28] showed that autistic children spend less
time looking at other people’s faces in triadic conversations
compared to TD children. Our findings are consistent with
these, as we observe from Table 3 that people with ASD made
fewer contacts per minute and spent less total time in contact
with the listeners.

We examined statistical significance with independent
sample t-tests on the data of the two groups. An independent
t-test suggests that there is a significant difference between
the averages of two groups if the p-value (the probability
of this difference occurring by chance) is smaller than the
widely accepted threshold of 0.05. We also report Cohen’s
d values associated with each statistic as the effect size,

which is the difference between the group means divided by
the pooled standard deviation [93]. Cohen’s d values of 0.2,
0.5, 0.8 generally correspond to small, moderate and large
differences between two groups, respectively. A summary of
behaviors we found to be significantly different between the
two groups can be found in Table 4.

In Setup90, we found that the maximum duration of ex-
clusions and total duration of exclusions percentage during
an interview exhibit significantly different results between
the two groups. No significant difference was observed for
the Exclusion statistics in Setup45, supporting the idea that
distributing attention was harder in Setup90 compared to
Setup45 for the ASD participants. Among Contact statistics,
the average duration of not making contact with anyone
was significantly higher in Setup90 for autistic individuals
in comparison with neurotypical individuals. The number of
contacts per minute was significantly lower for people with
ASD, in both Setup90 and Setup45.

In Tables 5 and 6, we present the distributions of head
orientations based on the subject’s conversational role. In this
analysis, we again observe that the differences between the
two groups are more evident in Setup90. The table shows
that, when speaking to multiple people, autistic individuals
tend to distribute their attention less evenly; their focus
usually remains on the person who made the last remark.
Neurotypical individuals pay slightly more attention on the
person who spoke last, while generally ensuring that the other
interviewer is also included in the conversation. This differ-
ence is confirmed to be significant by t-tests, as the results
reveal that people with ASD tend to look at the interviewer
who spoke last significantly more than neurotypical people
do. To the best of our knowledge, this is the first quantifica-
tion of these types of differences about conversational roles
and their impact on orienting in triadic settings.

Overall, we conclude that there are noticeable differences
between the two groups, and our model is able to reflect
and quantify these differences. This is valuable towards the
goal of creating a coaching tool which would allow autistic
individuals to undertake situational practice. While there are
many studies regarding social communication behaviors of
autistic people, none of them address these in the context
of three-way conversations among adults. The extensive lit-
erature on dyadic interactions generally found that autistic
individuals, compared with neurotypical individuals, display
behavioral differences such as spending less time looking at
other people’s faces [71] and providing fewer nonverbal cues
such as regular eye contact or maintaining a body orientation
towards a speaker [23]. Based on the literature on dyadic
interactions, and the limited literature on triadic interactions
for children [28], [74], one can expect that autistic adults
would display these different attention distribution behaviors
in triadic settings as well. As far as we know, we are the
first to conduct experiments that characterize differences
between neurotypical and autistic adults in triadic conversa-
tional settings, and our findings align with these expectations.
Although our small and non-random sample does not allow
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TABLE 4. Summary of statistically significant behavioral differences between the ASD and NT populations

Behavior Setup ASD Mean NT Mean t-statistic p-value Cohen’s d
Maximum duration of exclusions Setup90 50.3 16.4 2.53 0.014 1.24
Exclusions % during an interview Setup90 15.5% 4.2% 2.69 0.011 1.41

Average duration of not making contact with anyone Setup90 53.2 41.1 1.84 0.046 0.66
Number of contacts per minute Setup90 0.84 1.37 -2.21 0.023 1.08
Number of contacts per minute Setup45 1.44 2.15 -1.95 0.037 1.34

While speaking, looking at the interviewer who spoke last Setup90 30.3% 22.2% 1.87 0.038 0.45

TABLE 5. Distribution of head orientations while subject is listening

Head Orientation - Listening
Setup90 Setup45

ASD NT ASD NT
Interviewer who is speaking 27.1% 29.2% 27.4% 28.4%

Neutral 67.6% 67.4% 65.5% 65.6%
Other interviewer 4.9% 3.7% 5.5% 4.9%

TABLE 6. Distribution of head orientations while subject is speaking

Head Orientation - Speaking
Setup90 Setup45

ASD NT ASD NT
Interviewer who spoke last 30.3% 22.2% 22.1% 18.9%

Neutral 55.2% 60.8% 63.0% 64.7%
Other interviewer 14.1% 17.1% 13.4% 15.3%

generalization, this preliminary quantification of group dif-
ferences using an automated system shows an application of
our estimation models and is one of our contributions.

VI. CONCLUSION AND FUTURE WORK
In this paper, we improve our proposed models in [31] for
body and head orientation estimation that work with low-
resolution point clouds generated by two LiDAR sensors.
We improve the average error rate of our body orientation
estimation model from 8.4 degrees to 5.2 degrees. We en-
hance our head orientation estimation model by enabling
reliable estimations in realistic scenarios where the subject
is naturally moving with various head and body poses in a
triadic conversation setting. We present novel models that are
the first to reliably estimate body and head orientations using
LiDAR sensors from surveillance viewpoints. Our estimation
results are comparable to results in the literature, although
our models work with low-resolution and noisy point clouds
and without color information. We also showed that the
state-of-the-art models perform poorly in our low-resolution
setting although they are effective in high-resolution datasets.
This work pushes the boundaries of current body and head
orientation estimation systems by demonstrating for the first
time that low-resolution, noisy point clouds from LiDAR sen-
sors, without color information, can be used to estimate both
body and head orientations from surveillance viewpoints. We
believe that accurate orientation estimation models that can
work from unobtrusive distances are a significant develop-
ment. Our proposed models could help with pedestrian safety

[1], [17], behavior analysis and prediction [3], interaction and
attention modeling [18]–[20], while protecting user privacy.

As an application of our head orientation estimation
model, we created a triadic conversation scenario in a room
with LiDAR sensors placed to surveillance viewpoints. Using
our proposed model, we provide novel analysis on various
behaviors in triadic interaction settings and show the dif-
ferences between autistic and neurotypical individuals using
statistical significance tests. We are the first to quantify these
qualitatively well-known behavioral differences.

Limitations of this study; In future iterations of this
work, we can improve data collection; the network overload
issue can be prevented by using a sensor that supports a
1 Gbps network instead of 100 Mbps, as well as a more
powerful CPU. The estimated head positions from the built-
in human detection algorithm will be corrected using our
head detection algorithm presented in Section IV-B.

An additional limitation of this study is the small size of
the dataset; our conversation dataset has 12 autistic and 8
neurotypical individuals. While we found some statistically
significant differences, other differences might be revealed
with a larger number of subjects. We do not claim that our
small and non-random sample is representative of the larger
population of employment-seeking autistic young adults. Our
purpose with this comparison is to highlight the functionality
of the proposed technological contribution that is the orien-
tation estimation models, and it also provides preliminary
baseline results for future studies.

A potential limitation of this study is scalability and ro-
bustness to different environments, which we have not exper-
imented with yet for the current study, but plan to explore
in our future studies. Another limitation is the environmental
control. While all conversations were held in the same room
under the same conditions of heat and light and seating
arrangements, the naturalistic flow of conversation led to
some conversation variability across subjects. Although the
interviewers tried to follow conversational scripts closely,
minor differences in conversation flow might have affected
subject behavior patterns.

Applications: The proposed body and head orientation
estimation models can be used in various applications. We
plan to extend our models to become a component of virtual
coaching to high-functioning autistic individuals who are
seeking jobs, to integrate them to workplaces. We plan to
deploy a behavioral intervention program for autistic individ-
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uals using our proposed head orientation estimation and be-
havior analysis tools so that we can further test their effective-
ness, while also getting feedback from our participants about
this technology. We also plan to develop automated smart
coaches that leverage the differences between neurotypical
and autistic individuals, while imitating the decisions of a
professional behavioral coach. In conjunction with employer-
based initiatives to make workplace environments and hiring
practices more autism-friendly, tools that allow situational
practice and feedback of social communication could facili-
tate transition to employment for the large number of autistic
individuals aging into adulthood each year.

ACKNOWLEDGMENT
We thank Ara Jung, Trent Simmons, Sarah Luo and Saygin
Artiran for helping with data collection, Sarah Hacker and
Ara Jung for managing the IRB approval and subject pay-
ments, and all the participants in our study.

REFERENCES
[1] E. Rehder, H. Kloeden, and C. Stiller, “Head detection and orientation

estimation for pedestrian safety,” in 17th Int. IEEE Conf. Intell. Transp.
Syst. (ITSC). IEEE, 2014, pp. 2292–2297.

[2] B. Lewandowski, D. Seichter, T. Wengefeld, L. Pfennig, H. Drumm, and
H.-M. Gross, “Deep orientation: Fast and robust upper body orientation
estimation for mobile robotic applications.” in 2019 IEEE/RSJ Int. Conf.
Intell. Robots and Syst. (IROS), 2019, pp. 441–448.

[3] C. Chen and J.-M. Odobez, “We are not contortionists: Coupled adaptive
learning for head and body orientation estimation in surveillance video,”
in 2012 IEEE Conf. Comput. Vis. and Pattern Recognit. (CVPR). IEEE,
2012, pp. 1544–1551.

[4] Y. Kohari, J. Miura, and S. Oishi, “CNN-based human body orientation
estimation for robotic attendant,” in IAS-15 Workshop on Robot Perception
of Humans, 2018, Art. No. 1.

[5] G. Fanelli, T. Weise, J. Gall, and L. Van Gool, “Real time head pose
estimation from consumer depth cameras,” in Joint Pattern Recognit.
Symp. Springer, 2011, pp. 101–110.

[6] G. Borghi, M. Fabbri, R. Vezzani, S. Calderara, and R. Cucchiara, “Face-
from-depth for head pose estimation on depth images,” IEEE Trans.
Pattern Anal. and Mach. Intell., vol. 42, no. 3, pp. 596–609, 2018.

[7] L. Stark, A. Stanhaus, and D. L. Anthony, “"I don’t want someone to watch
me while I’m working": Gendered views of facial recognition technology
in workplace surveillance,” Journal Assoc. for Inf. Sci. and Technol.,
vol. 71, no. 9, pp. 1074–1088, 2020.

[8] D. P. Bhave, L. H. Teo, and R. S. Dalal, “Privacy at work: A review and
a research agenda for a contested terrain,” Journal of Manage., vol. 46,
no. 1, pp. 127–164, 2020.

[9] J.-E. Joo, Y. Hu, S. Kim, H. Kim, S. Park, J.-H. Kim, Y. Kim, and S.-M.
Park, “An indoor-monitoring LiDAR sensor for patients with alzheimer
disease residing in long-term care facilities,” Sensors, vol. 22, no. 20, p.
7934, 2022.

[10] “Lidar market: Forecast and analysis 2022-2028: Skyquest.” [Online].
Available: https://skyquestt.com/report/lidar-market

[11] M. Bouazizi, C. Ye, and T. Ohtsuki, “Activity detection using 2D LIDAR
for healthcare and monitoring,” in 2021 IEEE Global Commun. Conf.
(GLOBECOM). IEEE, 2021, pp. 01–06.

[12] A. Günter, S. Böker, M. König, and M. Hoffmann, “Privacy-preserving
people detection enabled by solid state LiDAR,” in 2020 16th Int. Conf.
Intell. Environ. (IE). IEEE, 2020, pp. 1–4.

[13] B. Rodrigues, L. Müller, E. J. Scheid, M. F. Franco, C. Killer, and
B. Stiller, “LaFlector: a privacy-preserving LiDAR-based approach for
accurate indoor tracking,” in 2021 IEEE 46th Conf. Local Comput. Netw.
(LCN). IEEE, 2021, pp. 367–370.

[14] C. N. Lokugam Hewage, D. F. Laefer, A.-V. Vo, N.-A. Le-Khac, and
M. Bertolotto, “Scalability and performance of LiDAR point cloud data
management systems: A state-of-the-art review,” Remote Sens., vol. 14,
no. 20, p. 5277, 2022.

[15] C. Papazov, T. K. Marks, and M. Jones, “Real-time 3D head pose and
facial landmark estimation from depth images using triangular surface
patch features,” in Proc. IEEE Conf. Comput. Vis. and Pattern Recognit.
(CVPR), 2015, pp. 4722–4730.

[16] P. Padeleris, X. Zabulis, and A. A. Argyros, “Head pose estimation on
depth data based on particle swarm optimization,” in 2012 IEEE Comput.
Soc. Conf. Comput. Vis. and Pattern Recognit. Workshops. IEEE, 2012,
pp. 42–49.

[17] W. Wang, X. Chang, J. Yang, and G. Xu, “Lidar-based dense pedestrian
detection and tracking,” Appl. Sci., vol. 12, no. 4, p. 1799, 2022.
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