
Abstract—In this paper, we propose a machine learning-based 

virtual physical therapist (PT) system to enable personalized 

remote training for patients with Parkinson’s disease (PD). Three 

physical therapy tasks with multiple difficulty levels are selected to 

help patients with PD improve balance and mobility. Patients’ 

movements are captured by a Kinect sensor. Criteria for each task 

are carefully designed by our PT co-author such that the patient’s 

performance can be evaluated in an automated manner. Given the 

patient’s motion data, we propose a two-phase human action 

understanding algorithm TPHAU to understand the patient’s 

movements, and an error identification model to identify the 

patient’s movement errors. To enable automated task 

recommendation, a machine learning-based model is trained from 

real patient and PT data to provide accurate, personalized, and 

timely task update recommendation for patients with PD, thereby 

emulating a real PT’s behavior. Real patient data have been 

collected in the clinic to train the models. Experiments show that 

the proposed methods achieve high accuracy in patient action 

understanding, error identification and task recommendation. The 

proposed virtual PT system has the potential of enabling on-

demand virtual care and significantly reducing cost for both 

patients and care providers. 

Index Terms—Action Understanding, Machine Learning, 

Parkinson’s Disease, Physical Therapy, Recommendation System 

I. INTRODUCTION 

Parkinson’s disease (PD) is the most common movement 

disorder. It affects about 1 million people in the US and 10 

million worldwide [1]. The combined direct and indirect cost of 

PD is estimated to be nearly $25 billion per year in the US alone 

[1]. Physical therapy is an essential treatment for patients with 

PD. Traditional physical therapy requires regular visits to the 

physical therapist (PT) (shown in Fig. 1), which may be 

expensive and inconvenient for patients with PD due to factors 

such as insufficient insurance coverage, impaired mobility, etc. 

For traditional physical therapy, a PT selects the training tasks, 

instructs the patient on how to perform the tasks, identifies and 

corrects the patient’s errors, and regularly updates the tasks, all in 

the clinic. After the PT session, the patient is expected to practice 

the training tasks at home by following written instructions 

provided by the PT. However, the patient’s performance and 

adherence to the tasks cannot be tracked at home without the 

supervision of the PT. Practicing a task with incorrect technique 

is not only ineffective for motor learning, it may also cause injury 

due to the impaired mobility of patients with PD.  King et al. has 

shown poor outcomes with unsupervised home-based exercise 

programs for patients with PD [2]. Furthermore, the training tasks 

cannot be updated until the patient’s next PT visit. Continuing to 

practice the same training task, which may not be suitable any 

more for the current state of the patient, could limit the patient’s 

progress or even reinforce motor learning in a negative way. To 

address these problems, several automated training systems have 

been developed to motivate patients and monitor their 

movements at home using motion capture sensors [3-6, 13]. 

However, these systems are not aimed at performance accuracy, 

and cannot provide personalized task recommendation for 

patients. 

 
Fig. 1. Traditional physical therapy treatment procedure.  

In this paper, we propose an on-demand virtual PT system, 

shown in Fig. 2.  The patient can use the cloud-based system we 

proposed in [7], where a Kinect sensor [8] was used to capture 

the patient’s movements and avatars are created to provide 

instructions and feedback. Instead of aligning the patient’s 

motion data with PT templates to evaluate the patient 

performance like [7], we propose a two-phase human action 

understanding (TPHAU) algorithm that can understand the 

patient’s sub-actions in performing the task and a Support Vector 

Model (SVM) based method to identify the patient’s errors. 

Moreover, based on the patient’s error and some subjective 

factors (e.g., age, discussed in Section III-D-1), a machine 

learning-based task recommendation model is proposed to 

provide automated task update recommendation for patients. 

Based on the recommendation results, either a new task or a 

guidance video will be rendered on the cloud and sent to the 

patient’s device.  The PT can remotely supervise the entire 

process. The proposed virtual PT system has the advantages of 

providing accurate, on-demand and personalized care. It has the 

potential of significantly reducing clinic visit requirements while 

offering continuous care, thereby reducing cost and expanding 

care for economically disadvantaged and rural patient 

populations. To validate the effectiveness of the proposed 

methods, we have collected real patient data in the Neurological 

Rehabilitation Clinic, UC San Diego Health. The proposed 

models are trained from the collected data and experimental 

results show that the proposed methods achieve high accuracy in 
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patient action understanding, error identification and task 

recommendation. 

 
Fig. 2. The proposed on-demand virtual PT system.  

A preliminary version of this work has been reported in [11], 

which introduced the PT-defined training tasks and criteria for 

patients with PD, and proposed the action understanding and 

error identification methods. In [11], any task update would still 

need to be performed manually by the PT at the clinic. In 

comparison, this paper enhances [11] to propose a machine 

learning-based task recommendation model to enable on-demand 

and personalized task recommendation for patients with PD. The 

task recommendations can be fully automated, or if desired, the 

system may require remote supervision and approval by the PT. 

The remainder of this paper is organized as follows: Section II 

reviews related work. Section III introduces the methods 

proposed in the virtual PT system. Section IV presents the 

experimental results. Section V concludes the paper and discusses 

future work. 

II. RELATED WORK 

A. Automated training systems for patients with PD 

With the development of motion capture sensors, more and 

more sensor-based automated training systems have been 

developed to improve the effectiveness of home training for 

patients with balance and mobility problems. Hssayeni et al. [3] 

used wearable sensors to identify motor fluctuations in patients 

with PD during a variety of daily living activities. Stack et al. [4] 

used wearable sensors to detect subtle instability in patients with 

PD. However, wearable sensors attached on the body may cause 

extra burden to patients with PD due to their impaired mobility. 

Therefore, camera-based sensors were considered more 

convenient in monitoring the movements of patients with PD. 

Galna et al. [12] proved the high accuracy of the Kinect sensor 

in measuring clinically relevant movements in patients with PD. 

Galna et al. [5] and Pompeu et al. [6] designed two game-based 

training systems using Kinect and proved their feasibility and 

safety for patients with PD. However, the game-based training 

systems are designed to motivate the patients and cannot enable 

careful monitoring of desired patient performance and 

subsequent task recommendation like a PT does. Lin et al. [13] 

developed a Kinect-based rehabilitation system to assist patients 

with movement disorders and balance problems. However, the 

performance evaluation method proposed in [13] failed to 

consider the patient’s reaction delay as it simply compared the 

patient’s movements with the standard movement frame by 

frame. Most of these training systems provide uniform training 

for patients and cannot provide accurate evaluation, personalized 

feedback, and most importantly, task recommendation based on 

the patient’s performance like a PT at the clinic. In comparison, 

our proposed virtual PT system provides accurate movement 

understanding, error identification, and personalized task 

recommendation, rendering our system unique. In addition, the 

cloud-based system can be used at any place at any time to 

enable on-demand virtual care, with the potential to enable 

personalized physical therapy with better effectiveness and 

compliance, while lowering cost and increasing patient 

participation.  

B. Human action understanding 

To enable automated performance evaluation, the first step is 

to understand the patient’s movements/actions. Generally, human 

action understanding includes two categories: 1) Action 

recognition, which is the classification of an action from videos 

[14, 15]. However, recognizing what task the patient is 

performing is insufficient. We need to understand the movement 

details and identify the patient’s movement errors. 2) Action 

detection/segmentation, which refers to locating actions of 

interest in space and/or in time [16, 17]. Most studies in this area 

focus on the detection of long action segments. In [16] and [17], 

a detected segment is considered correct if the overlap between it 

and the ground-truth action segment is over 40%, as this threshold 

is consistent with visual inspection. However, the sub-actions 

discussed in this paper (see Section III-A-2) are much shorter in 

time length and closer to each other (i.e., the pause between 

adjacent sub-actions is negligible), which makes the 

segmentation much more challenging. In this paper, we propose 

the TPHAU algorithm to accurately detect/segment the patient’s 

sub-actions, which will be discussed in Section III-B. 

C. Automated Recommendation systems 

With the rapid development of artificial intelligence, more and 

more automated recommendation systems have been developed 

to enable optimized and personalized user experiences, e.g., 

friend recommendation in social networks [9, 29],  ad 

recommendation [10, 30], etc. However, little research has been 

conducted to develop automated task recommendation systems 

for healthcare applications. To the best of our knowledge,  we are 

the first to achieve automated task recommendation for patients 

with PD. The proposed virtual PT system is trained from real 

patient and PT data, thus it enables accurate and personalized task 

recommendation for patients with PD. 

III. METHODS 

A. Kinect-based Automated Training System for Patients with 

Parkinson’s Disease 

In this section, we first introduce the training tasks selected by 

our PT co-author for patients with PD, then  discuss how the  

proposed  training  system  can  identify the  patient’s movement 



TABLE I. TASKS AND DIFFICULTY LEVELS. FROM LEFT TO RIGHT: SQUAT (SQ), FORWARD LUNGE (FL), BACKWARD LUNGE (BL). 

Levels of SQ 
Hand 

support 

Squatting 

angle 

 
Levels of FL 

Hand 

support 

Length 

of step 

 
Levels of BL Hand support 

Length 

of step 

SQ1 

Yes 

Small  FL1 

Yes 

Small  BL1 Yes Small 

SQ2 Large  FL2 Large  BL2 
Step back with hand support, 

then take hands off 
Large 

SQ3 
No 

Small  FL3 No Small  BL3 
No 

Small 

SQ4 Large  FL4 Arms up Large  BL4 Large 

errors automatically. To avoid confusion, we would like to 

clarify the definitions of four terms: task, movement/action, 

repetition, and sub-action. Task is an exercise designed by the 

PT to train patients. Movement/action is the execution of the task 

by a patient, which may contain one or multiple repetitions. Each 

repetition can be further divided into several sub-actions, which 

will be introduced in Section III-A-2. 

1)  Tasks and Difficulty Levels 

Based on the work of King et al. [18] describing sensorimotor 

agility training for patients with PD, our PT co-author has 

selected three balance/agility based tasks: squat (SQ), forward 

lunge (FL) and backward lunge (BL). For each task, four 

difficulty levels (level 1 ~ 4) are designed (see Table I). During 

a traditional PT session, a patient performs a given training task 

at a certain difficulty level . The PT inspects the patient’s 

performance and decides if changes to the difficulty level is 

needed. For example, a patient who currently performs a squat 

exercise may progress to a more difficult variation of the squat 

if the initial difficulty level becomes too easy as the patient 

improves. The PT’s assessments are based on self-designed 

criteria for each task. Criteria are based on different sub-actions 

of a given exercise movement, which will be introduced in 

Section III-A-2. 

2) Sub-actions and Criteria 

For each physical therapy task, the patient’s movements can be 

divided into several sub-actions. For example, movements in FL 

include: 1) stand, 2) step forward, 3) maintain balance control, 4) 

return to the original position, 5) stand. Therefore, we define five 

sub-actions S1 ~ S5 in Table II, which apply to all the three tasks 

considered for patients with PD: SQ, FL and BL. 

TABLE II. SUB-ACTIONS IN PATIENT’S MOVEMENTS 

Sub-action Patient’s movements 

S1 Standing 

S2 Movement initiation: try to reach the target position 

S3 Balance hold: maintain balance control 
S4 Return to the original position 

S5 Standing 

To evaluate the patient’s performance in an automated and 

quantified way, we have defined some criteria for each task (i.e., 

the rules for evaluating the patient’s performance). These criteria 

have been selected based on the expert PT’s knowledge of 

compensatory movement strategies of patients with PD.  For 

example, a common compensatory strategy that a patient with PD 

may use in FL is to bend the knee of the back leg, due to both 

strength and balance impairments. Therefore, the PT has defined 

“keep the back knee straight” as one of the criteria for FL. A task 

criterion is applicable to one or more sub-actions of the task. 

Table III shows the criteria defined by our PT co-author and the 

applied sub-actions for SQ, FL, and BL. 

In the Kinect-based training system, the Kinect sensor captures 

25 joints of the human skeleton with 3-D coordinates for each 

joint [8]. To enable automated action understanding and error 

identification, we first need to translate PT’s criteria into some 

Kinect-captured quantities (KCQs). KCQs are quantities that can 

be derived from the joint coordinates captured by Kinect. In this 

paper, we define the following six KCQs for the three tasks. 

(Considering the difference in body size, we use normalized 

quantities, e.g., angles and normalized length of step.) 

Thigh Angle (ThA): the angle between the thigh and the 

vertical direction. In SQ, we use the average of the left and right 

thigh angles to represent the squatting angle. 

Trunk Angle (TrA): the angle between the trunk and the 

vertical direction. It represents the forward-leaning angle in SQ 

and can be used to check whether posture is tall in FL. 

Trunk-Leg Angle (TrLA): the angle between the trunk and the 

back leg. In BL the patient should lean slightly forward thus 

keeping the trunk parallel with the back leg. 

Knee Angle (KA): the angle between the thigh and the shank, 

representing whether the knee is straight. 

Normalized Length of Step (NLoS): the distance between the 

two feet, normalized by the length of the leg. 

Shank Angle (SA): the angle between the shank and the 

vertical direction, representing whether the shank is vertical. 

Fig. 3 shows these KCQs. KCQs used in multiple tasks are 

shown in only one task for simplicity. The target value of each 

KCQ shown in Table III is either defined by the PT (e.g., KA: 

180°) or derived from the PT’s demonstration (e.g., ThA: 49° for 

small angle and 67° for large angle). 

 
Fig. 3. Tasks and Kinect-captured quantities (KCQs). From left to right: Squat 

(SQ), Forward Lunge (FL), Backward Lunge (BL). 

Given the KCQs, the patient’s performance can be evaluated 
automatically by checking the KCQs in the applied sub-actions. 

In Section III-B, we will introduce how to segment the sub-

actions in patient’s movements.  

B. Patient Action Understanding 

Action understanding in the proposed system includes two 

steps: 1) Repetition detection. The patient may perform multiple



TABLE III. PT-DEFINED CRITERIA, KINECT-CAPTURED QUANTITIES (KCQS) AND APPLIED SUB-ACTIONS FORSQUAT (SQ), FORWARD LUNGE (FL), BACKWARD 

LUNGE (BL). 

SQ: PT’s 
Criterion 

KCQ 
Applied 

sub-actions 
 

FL: PT’s 
Criterion 

KCQ 
Applied 

sub-actions 
 

BL: PT’s 
Criterion 

KCQ 
Applied 

sub-actions 

Sit hips 
back 

towards 
a chair 

ThA: 49° 

(small), 
67° (large) 

S3 

 
Keep the back 
knee straight 

KA (back leg): 
180° 

S2, S3  
Keep the back 
knee straight 

KA (back leg): 
180° 

S3 

 
Keep the 

posture tall 
TrA: 0° S2, S3, S4  

Keep the trunk 
parallel with the 

back leg 
TrLA: 0° S2, S3, S4 

Lean 
forward 

TrA: 22° 

(small), 
27° (large) 

S3 

 Length of step 
NLoS: 0.47 

(small), 0.79 
(large) 

S3  Length of step 
NLoS: 0.48 

(small), 0.78 
(large) 

S3 

 
Keep the front 
shank vertical 

SA (front leg): 
0° 

S3  
Keep the front 
shank vertical 

SA (front leg): 
0° 

S2, S3 

repetitions on a task each time, thus we need to detect the starting 

point and endpoint of each repetition. 2) Sub-action 

segmentation, i.e., to segment the sub-actions in each repetition. 

To achieve this, we propose two Hidden Markov Models 

(HMMs) [19]: HMM-S for single repetition and HMM-M for 

multiple repetitions in Fig. 4 and Fig. 5. Details about the 

components of HMM are discussed in our preliminary work [11]. 

HMM-S consists of five hidden states S1 to S5. (Note that one state 

in the HMM model represents a sub-action in patient’s 

movements, thus we use the same symbol Si for both.) The state 

transfers from S1 to S5 and ends in S5. For multiple repetitions, the 

state will transfer back to S1 after S4 and start a new repetition. 

Therefore, S1 to S5 are combined into one state in HMM-M. aij is 

the state transition probability, i.e., the probability of transferring 

from Si to Sj. 

 
Fig. 4. HMM-S: the HMM model for single repetition. 

 
Fig. 5. HMM-M: the HMM model for multiple repetitions. 

A key issue to be addressed for the HMM model is the HMM 

feature to be selected for the model. The HMM feature is the 

quantity we observe and use to infer the hidden states. It can be 

any subset of the joint coordinates, or quantities derived from the 

joint coordinates (like the six KCQs defined in Section III-A-2). 

For the two HMM models defined in this paper, the displacement 

d and velocity v of the primary moving body parts are selected as 

the HMM feature. In the task SQ, the patient bends his/her legs 

to move the hips up and down, thus ThA represents the movement 

and is used as the displacement d. In the tasks FL/BL, the patient 

moves one foot back and forth so NLoS can be used as the 

displacement d.  The velocity v is calculated from d. Reasons for 

using the combination of d and v instead of any single variable as 

the HMM feature are discussed in [11]. 

 Parameters of an HMM model include the state transition 

probability aij, emission probability bj(X) (i.e., the probability of 

observing X under state Sj), and the initial state distribution πi 

(i.e., the probability that the Markov chain starts from state Si). 

For HMM-S and HMM-M, parameters are estimated using 

supervised learning. Training data are collected from real patients 

with PD. For each training sample, five sub-actions in the 

movements (see Table II) are manually segmented. (Note that for 

HMM-M, S1 includes the manually-labelled S1 and S5.) The 

transition probability aij is calculated as 

 
number of transitions from  to 

,  1 , .
number of transitions from 

i j

ij

i

S S
a i j N

S
=    (1) 

For the emission probability, we use the Gaussian Mixture 

Model (GMM) as 

 

1

( ) ( , ),
C

j jc jc jc

c

b X w 
=

=   (2) 

where C is the number of mixture components, wjc, μjc, Σjc are 

the weight, mean, and covariance of the c-th Gaussian 

component. Parameters of GMM are estimated from the training 

data using the Expectation-Maximization (EM) algorithm [22]. 

The GMM model of each sub-action/state is trained separately 

using the motion data in that state.  

Given the model parameters λ = {aij, bj(X), πi}, our goal is to 

infer the hidden state sequence Q from any new observation 

sequence O. The Viterbi algorithm [23] is a dynamic 

programming algorithm for finding the most likely hidden state 

sequence Q* of the observation O using 

 
* arg max ( | , ) = arg max ( , | ).

Q Q

Q P Q O P Q O =  (3) 

Based on the Viterbi algorithm, we propose a two-phase human 

action understanding (TPHAU) algorithm to detect the patient’s 

repetitions and segment sub-actions in each repetition. In the first 

phase, the HMM-M model is used to detect the starting point and 

endpoint of each repetition. Considering the difference of 

displacement amplitude in different patients and in different 

repetitions, we apply repetition-based normalization on the 

displacement data d of the training samples (i.e., d in each 

repetition are normalized into [0, 1]). For the test samples, global 

normalization (i.e., d of the entire performance including multiple 

repetitions are normalized into [0, 1]) is used since the time 

interval for each repetition is unknown in the first phase. Then 

based on the trained HMM-M model, the hidden states of the test 

samples can be estimated by applying the Viterbi algorithm [23] 

and the patient’s repetitions can be further inferred. Since S1 is the 

boundary between two repetitions, the starting point of each 

repetition (except the first one) can be estimated as the midpoint  



 
Fig. 6. Hidden state sequence obtained from the Viterbi algorithm [23]. Four repetitions R1, R2, R3, R4 are inferred.

of each consecutive S1 sequence. Fig. 6 shows an example. Four 

repetitions R1 ~ R4 are detected from the hidden state sequence. 

However,  noise in the motion data may cause the detection 

of extra repetitions. There are two types of extra repetitions: 1) 

noise being detected as complete repetitions, 2) recognizing one 

repetition as two or more. Detailed discussion about extra 

repetitions can be found in our preliminary work [11]. To remove 

the extra repetitions, we analyze the Time Length (TL), the 

Amplitude of Displacement (AoD) (i.e., maximum of d), and the 

Displacement of Endpoint (DoE) (i.e., d at the endpoint of each 

repetition) of all the repetitions in the training data. The mean 

value μTL, μAoD, μDoE and standard deviation σTL, σAoD, σDoE are 

calculated. According to the three-sigma rule [24], a detected 

repetition is an outlier and considered as extra repetition if 

 
3  or 3  

                           or 3 .

TL TL AoD AoD

DoE DoE

TL AoD

DoE

   

 

−  − 

− 
 (4) 

An extra repetition is eliminated by merging into its previous 

or next repetition, whichever is closer to it (i.e., the one with 

fewer frames of S1 between them). After removing extra 

repetitions, we use a second phase to segment sub-actions in each 

repetition. Although the state sequence obtained from the first 

phase also includes information about sub-actions in each 

repetition, the sub-action information is not accurate for the 

following reasons. In the first phase, global normalization is used 

thus the range of d in some repetitions may be smaller than [0, 1]. 

Different normalization methods on the training and test data will 

cause inaccuracy in state/sub-action segmentation. For example, 

in training data, d will always reach 1 in S3 because of the 

repetition-based normalization. For a test sample where d < 1 in 

S3, some frames at the beginning of S3 may be detected as S2. To 

solve this problem, we propose using a second phase to enhance 

the accuracy in sub-action segmentation. First, we normalize the 

displacement data d of each repetition that is detected in the first 

phase. Second, the HMM-S model is applied on each repetition. 

Since the HMM-S model is a left-to-right model for single 

repetition, it is guaranteed that no extra repetitions will be 

detected. Therefore, sub-actions can be segmented based on the 

hidden state results in the second phase. Fig. 7 shows the pseudo-

code for the proposed TPHAU algorithm. 

C. Movement Error Identification 

In this section, we will introduce how to identify the patient’s 

movement errors. For any task, the criteria used for evaluating 

the patient’s performance have been defined by our PT co-author 

(see Table III). Criteria are independent of each other (i.e., 

whether the patient is performing correctly on one criterion is 

independent of his/her performance on the other criterion). 

Based on the repetition detection and sub-action segmentation 

results, the patient’s movement errors can be identified by 

checking the value of his/her corresponding KCQs in the applied 

sub-actions of each criterion. For example, the criterion “keep 

the back knee straight” of FL applies to S2 and S3 (see Table III), 

so we just need to check the knee angle (KA) of the back leg for 

frames in S2 and S3. The patient’s error in one frame eframe is 

calculated as the difference between the patient’s knee angle (KA) 

in this frame and the required 180 degrees. Error in a repetition 

erep is the average of eframe among all the applied frames (i.e., 

frames of the applied sub-actions) in this repetition. The patient’s 

overall error on this criterion is calculated as the mean and 

maximum of erep for all the repetitions. The mean and maximum 

error emean and emax will be used as features of the task 

recommendation model, which will be discussed in Section III-

D. 

Algorithm 1: TPHAU algorithm 

Input: Two HMM models HMM-M and HMM-S, 

patient’s displacement sequence D = {d1, d2, …, dT} 

Output: Segmentation of sub-actions 
1. Normalize D into [0, 1] and calculate velocity V  
2. Apply Viterbi algorithm on O = {D; V} using HMM-M, 

get the hidden state sequence Q 
3. for each consecutive S1 sequence in Q 
4.      Starting point of a repetition = midpoint of the 

consecutive S1 sequence 
5. end for 
6. Detect extra repetitions using (4) and merge each of them 

into its previous or next repetition (whichever is closer) 
7. for each remaining repetition 

8. Normalize the displacement sequence of this repetition 

Drep into [0, 1], calculate Vrep  

9. Apply Viterbi algorithm on Orep = {Drep; Vrep} using 

HMM-S, get the hidden state sequence Qrep 

10. Segment sub-actions in this repetition based on Qrep 

11. end for 

Fig. 7. Pseudo-code of the proposed TPHAU algorithm.  

In additional to the quantitative errors, qualitative assessments 

(i.e., the patient’s performance is either satisfactory or non-

satisfactory on a criterion) are also crucial in providing feedback 

for the patient.  If the patient’s performance on a criterion is non-

satisfactory, guidance will be rendered on the cloud and sent to 

the user’s device to instruct him/her to improve the performance. 

Therefore, we build an SVM-based classification model [25]. For 

each training sample, the mean and maximum errors on a 

criterion are used as the input feature. The label y of the sample 

is given by the PT based on the patient’s performance during the 

data collection process, with y = 1 representing positive (i.e., the 

performance is satisfactory on this criterion) and y = 0 

representing negative (i.e., the performance is non-satisfactory 

on this criterion). A linear binary SVM classifier is trained from 

the training data to find out the optimal decision boundary 

between the positive and negative samples. Since the criteria are 



independent of each other, a unique classification model is 

trained for each criterion of each task. 

D. Machine Learning-Based Task Recommendation 

In this section, we propose a task recommendation model to 

emulate the PT’s decisions in updating the training tasks (i.e., 

the difficulty level for each task). Section III-D-1 introduces the 

input and output of the model. Section III-D-2discusses the 

imbalanced data problem and existing methods. In Section III-

D-3, we propose a novel hybrid over-sampling approach to 

address the imbalanced data problem. 

1) Task Recommendation Framework 

To enable automated task update recommendation, we 

propose a random forest-based classification model to emulate 

the PT’s decision in updating the difficulty level of each task 

based on the patient’s performance. Random forest (RF) is an 

ensemble learning method for classification, regression, and 

other problems [26]. Output of the proposed model is the PT’s 

decision in updating the difficulty level, which are quantified 

into three categories: Progress (i.e., from level k to k+1), Repeat 

(i.e., repeat the current level k), and Regress (i.e., from level k to 

k-1). Note that a patient cannot progress any more when the 

current level is 4, but the PT may still assign progress if his/her 

performance is excellent in order to help the model learn the 

difference between ordinary and excellent performance. For the 

current level 1, the difference between repeat and regress are 

also clarified although outcomes for both situations are level 1. 

Inputs/Features of the model include the patient’s maximum and 

mean error on each criterion (discussed in Section III-C). 

Besides, some subjective factors (e.g., pain, age/sex, etc.) may 

also affect the PT’s decision on task recommendation. For 

example, the PT may recommend Repeat to a patient with knee 

pain, even if the patient performs well on the current level. Table 

IV shows all the features used in the task recommendation 

model. 

TABLE IV. FEATURES OF THE RF CLASSIFIER. 

Type Feature Value 

Continuous 
Maximum/mean error on a criterion Criterion-specific 

Age 56 ~ 89 

Nominal 

Sex M/F 

Current difficulty level 1/2/3/4 

Knee pain 
Y/N 

Back/hip pain 

2) Imbalanced Data Problem and Existing Methods 

 For the patient data that we have collected in the clinic, each 

sample (i.e., a patient performing a task once) belongs to one of 

the three categories (Regress, Repeat, Progress) based on the 

PT’s recommendation on the task update. Table V shows the 

distribution of collected samples in the three classes for the three 

training tasks. We can see that the collected data are imbalanced 

for the three categories. The PT is conservative in regressing the 

patient, thus the percentage of samples in class Regress is very 

low (under 15%). As for Repeat and Progress, fewer patients 

(about only 20%) can progress to the next level for FL/BL than 

SQ.  It may be because FL and BL are more challenging than SQ 

as they involve dynamic weight shift from on foot to the other, 

which is particularly difficult for patients with PD. 

Because of the imbalanced data problem, the RF classifier 

may be biased towards the majority class (e.g., class Repeat for 

FL) to achieve high overall accuracy. For example, a classifier 

applied on a training dataset with 95% positive samples and 5% 

negative samples can achieve high overall accuracy of 95% by 

using the simple strategy of always predicting positive. However, 

the cost of misclassifying a minority sample as a majority sample 

can sometimes be much higher than the cost of the reverse error. 

For example, predicting a patient who should Regress to the 

lower level (due to severe pain or errors) as Repeat and Progress 

may cause injury to the patient. Therefore, we should focus on 

the accuracy of each individual class instead of the overall 

accuracy. Next, we describe techniques that have been 

developed to address the imbalanced data problem in other 

applications, point out issues in utilizing these techniques, and 

subsequently propose a new technique for our application. 

Results of using our proposed technique in comparison with the 

existing methods will be provided in Section IV-D. 

TABLE V. SAMPLE DISTRIBUTION FOR SQUAT (SQ), FORWARD LUNGE (FL), 
BACKWARD LUNGE (BL). 

Task 
Class (PT recommendation) 

Regress Repeat Progress 

SQ 13.5% 42.5% 44.0% 

FL 11.8% 67.8% 20.4% 
BL 12.6% 63.2% 24.2% 

Majority under-sampling [32]. It reduces the number of 

majority samples by selecting part of the majority samples. 

Because of the limited number of collected training samples in 

our task recommendation system, it may have negative effects 

on the accuracy. 

Minority over-sampling with replacement [33]. It increases 

the number of minority samples by creating minority duplicates. 

However, Ling et al. [27] propose that it may cause over-fitting 

problem as it makes the decision region for the minority class 

more specific. 

Decision threshold adjustment [31]. For a normal RF 

classifier, the probabilities of all the classes are calculated and 

the one with the highest probability is selected as final 

classification result. Provost et al. [31] propose to tune the 

decision boundary to be biased towards the minority class, which 

is equivalent to assigning larger weight on the probability of the 

minority class. For the PT task recommendation problem, we can 

assign weights to the predicted probabilities as {wreg∙P(Regress), 

wrep∙P(Repeat), wprog∙P(Progress)} (wreg may be greater than wrep 

and wprog) and then select the class with highest probability. 

However, Chawla et al. [28] has shown that simply changing the 

decision threshold cannot always guarantee better results. 

Synthetic minority over-sampling [28]. The minority class 

is over-sampled by taking each minority sample and introducing 

synthetic samples between the sample and its nearest neighbors. 

The distance dist between two samples A and B is calculated as  
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where {f1, …, fM} are continuous features, {fM+1, …, fM+N} are 

nominal features, and Med is the median of standard deviations 

of all continuous features for the minority class. For continuous 

features, the Euclidean distance is included in dist. For nominal 

features, Med is included in dist if A and B have different values 

on this feature. For each minority sample, k nearest neighbors 

are found and p neighbors among them (p ≤ k) are randomly 

selected, depending on the over-sampling rate p∙100%. A 

synthetic sample is generated between the minority sample and 

each of the selected p neighbors. If p is not an integer, use ceil(p) 

first and randomly select a percentage of p/ceil(p)∙100% from all 

the synthetic samples. For continuous features fc, linear 

interpolation is used to generate the new sample C as 

 ( )
c c c cf f f fC A m B A= +  −  (7) 

where m is a random number between 0 and 1. For nominal 

features, the value occurring in the majority of the k nearest 

neighbors is assigned to C. However, applying the traditional 

over-sampling method in our dataset does not give satisfying 

results. We will explain the problems and discuss the solutions 

in the next section. 

3) Proposed Hybrid Over-Sampling Approach 

Based on the traditional synthetic minority over-sampling 

method [28], we propose a novel hybrid over-sampling approach. 

In this section, we will first introduce a pre-processing step 

(feature standardization), and then introduce the problems of 

applying the traditional over-sampling method [28] in our 

dataset and discuss our proposed solutions. 

a) Feature standardization for continuous features 

The continuous features we use in the task recommendation 

model (see Table IV) use different units of measurement and 

differ greatly in value range. For example, the value range of the 

patient’s age is 56 ~ 89 while the patient’s error on the criterion 

“normalized length of step” has the value range of 0 ~ 0.3. 

Therefore, features with greater values will dominate in the 

distance calculation in (5) and features with smaller values may 

be ignored. To solve this problem, we propose a feature 

standardization step to preprocess the continuous features: all 

continuous features are normalized to zero-mean and unit 

variance before the distance calculation. 

b) Hybrid interpolation for error features 

There are some problems with the traditional linear 

interpolation approach (7) when generating synthetic samples. 

We will first use the error features (i.e., patient’s error on each 

criterion) as an example to illustrate the problem and propose our 

solutions, then generalize the solutions to the other features. 

Table VI shows a simple example of the error features on two 

criteria C1 and C2. The PT recommends Regress for sample A 

and B for different reasons: A’s performance on both criteria are 

non-satisfactory (Non-Sat) and B’s error on C2 is too large (50°). 

By using linear interpolation (with the random number m = 0.5 

in (7)), the synthetic sample C has error = 10° on C1 (which may 

be Sat) and error = 30° on C2 (Non-Sat).  However, the PT may 

use complicated strategies in making recommendations instead 

of simply counting the number of Sat criteria. For example, if a 

sample has one Sat and one Non-Sat for the two criteria, the PT 

may recommend Regress only if the error of Non-Sat is too large 

(e.g., 50° on C2 for sample B). Therefore, the PT may not 

recommend Regress for sample C since its error on C2 is not so 

important. To create a correct Regress sample, we first propose 

a biased interpolation method based on the following fact: a 

Regress sample will still be in class Regress if any/all of its error 

features get larger in value. For the example in Table VI, a 

synthetic sample D that uses larger value of A and B on each 

error feature must also be a Regress sample. 

TABLE VI. DIFFERENT INTERPOLATION METHODS WHEN GENERATING 

SYNTHETIC SAMPLES 

Sample Error on C1 Error on C2 Recommendation 
A 20° (Non-Sat) 10° (Non-Sat) Regress 

B 0° (Sat) 50° (Non-Sat) Regress 

C (linear) 10° (Sat) 30° (Non-Sat) Regress? 

D (biased) 20° (Non-Sat) 50° (Non-Sat) Regress 

E (hybrid) 
20° (Non-Sat, 

biased) 

30° (Non-Sat, 

linear) 
Regress 

However, using biased interpolation on all the error features 

may cause the synthetic samples to be too far away from the 

original minority samples and the decision boundary to be not 

optimal for the original minority samples. Fig. 8 shows an 

example of a majority class and a minority class. When the 

synthetic samples are far away from the original samples (see 

(a)), the decision boundary causes a high error rate on the 

original minority samples. To achieve the optimal over-sampling 

results, the synthetic samples should be among the original 

minority samples (as shown in (b)). 

 
Fig. 8. Minority over-sampling. (a) Synthetic samples are far away from original 
minority samples. (b) Synthetic samples are among original minority samples. 

Therefore, we propose a hybrid interpolation approach to 

create synthetic over-sampling samples. When generating a 

synthetic Regress sample E from original Regress samples A and 

B, the SVM classifier (discussed in Section III-C) is applied on 

A and B for each error feature. If both A and B are classified as 

Sat (or both are Non-Sat) on a criterion, linear interpolation in 

(7) is used to create the value of the synthetic sample. Otherwise, 

biased interpolation will be used (i.e., use the larger error value 

of A and B). The last row in Table VI illustrates this approach. 

c) Hybrid interpolation: generalization to the other features 



To generalize the proposed hybrid interpolation approach to 

the other features, we define features with Clear Effects on 

Performance (CEoP) as those features which can cause patient’s 

better/worse performance, e.g., knee pain will cause worse 

performance. However, age and sex have no clear/direct effects 

on the performance. Based on the definition, we propose 

different interpolation methods for different features as follows. 

(i) Continuous features w/ CEoP: including patient’s error on 

each criterion. Hybrid interpolation described in the previous 

section is used. (ii) Continuous features w/o CEoP: age. Since 

it has no clear effects on the performance, the proposed biased 

and hybrid interpolation approach cannot be used. Thus, we use 

linear interpolation on it. (iii) Nominal features w/ CEoP: 

including knee pain and back/hip pain. As linear interpolation 

(which is part of the proposed hybrid approach) cannot be used 

on nominal features, we use biased interpolation: if the two 

Regress samples differ in value (one is Y and the other is N), use 

Y for the synthetic Regress sample. (iv) Nominal features w/o 

CEoP: including sex and current difficulty level. Both biased 

and linear interpolation cannot be used on it. Hence, we use the 

value occurring in the majority of the k nearest neighbors for the 

synthetic Regress sample. The pseudo-code for the proposed 

hybrid interpolation approach is shown in Fig. 9.  

Algorithm 2: Hybrid over-sampling (for Regress samples) 

Input: Regress samples A and B 
Output: Synthetic Regress sample C 

1.  for each feature f of C 

2. if f is continuous feature w/ CEoP 

3. Apply the SVM-based error identification model 

on Af and Bf, get the prediction results pA and pB 

4. if pA equals pB 

5. Cf = Af  + m∙(Bf - Af) 

6. else 

7. Cf = max(Af, Bf) 

8. end if 

9. else if f is a continuous feature w/o CEoP 

10. Cf = Af  + m∙(Bf - Af) 

11. else if f is a nominal feature w/ CEoP 

12. if Af equals Bf 

13. Cf = Af 

14. else 

15. Cf = Y 

16. end if 

17. else 

18. Cf  uses the value occurring in the majority of the 

k nearest neighbors of A on feature f 

19. end if 

20. end for 
Fig. 9. Pseudo-code of the hybrid over-sampling approach.  

For class Progress, the same hybrid interpolation approach 

can be used for synthetic over-sampling except that a smaller 

error value and pain = N will be used in biased interpolation. For 

class Repeat, biased interpolation cannot be used since it is an 

intermediate class. From Table V, we can see that class Repeat 

is not a minority class for all the three tasks discussed in this 

paper, thus over-sampling is not needed for it. 

IV. RESULTS 

In this Section, we will first introduce the data collection 

process, and then present the results of the proposed patient 

action understanding, error identification, and task 

recommendation models. We also analyze and report the runtime 

efficiency of the proposed algorithms in the Appendix. 

A. Experimental Setup and Data Collection 

This research was approved by the Institutional Review Board 

at UC San Diego (protocol #181413X). 35 patients with PD (age 

56 ~ 89, 22 males, 13 females, Hoehn & Yahr stage 1 ~ 4) 

recruited from the Neurological Rehabilitation Clinic, UC San 

Diego Health, participated in the data collection. All subjects 

signed the informed consent form. Each patient participated in 

the data collection for multiple times. Patient’s motion data were 

recorded by a Microsoft Kinect v2 sensor. The corresponding PT 

assessments (i.e., whether the patient’s performance was 

satisfactory or not on each criterion) and recommendations (i.e., 

regress, repeat or progress) were also recorded. For each task, 

the motion of one patient in one session constitutes a data 

sample. Each patient participated in the data collection for 2 ~ 4 

times. Note that sometimes some patients were not able to 

perform some tasks (e.g., BL was too difficult for some patients), 

thus the number of collected samples for each task were 

different. We collected 96 samples for SQ, 93 samples for FL, 

and 87 samples for BL in total. Typically, patient’s movements 

on a task includes 4 repetitions, with about 10 seconds on each 

repetition. The Kinect sensor captures the (x, y, z) coordinates of 

25 joints per frame. With frame rate of 30 frames/second, that 

amounts to about 90,000 data points for each task performed by 

a patient in one session. 

 
Fig. 10. Data collection in PT clinic.  

B. Patient Action Understanding Results 

To validate the proposed TPHAU algorithm, we conduct 

experiments using the stratified 10-fold cross validation on SQ, 

FL, BL separately, with 90% of the samples for each task used 

for training and 10% for test. The comparison between the one-

phase Viterbi algorithm [23] and the proposed TPHAU 

algorithm is shown in Table VII. For repetition detection, the 

percentage of correct, wrong, missing repetitions, and the 

number of extra repetitions (discussed in Section III-B) are 

calculated. We can see that the proposed TPHAU algorithm 

enhances the accuracy of repetition detection significantly, with 

more correct repetitions and much less extra repetitions, 

especially for BL. For sub-action segmentation, we evaluate the 
 



TABLE VII. REPETITION DETECTION AND SUB-ACTION SEGMENTATION RESULTS FOR SQUAT (SQ), FORWARD LUNGE (FL), BACKWARD LUNGE (BL) 

Method Task 
Repetition detection 

Sub-action segmentation: 
Sensitivity 

Sub-action segmentation: 
Specificity 

Correct Wrong Missing No. of extra repetitions S2 S3 S4 S2 S3 S4 

One-phase 
Viterbi 

[23] 

SQ 90.6% 9.4% 0% 5 91.1% 78.3% 92.8% 93.6% 97.9% 94.2% 

FL 97.9% 2.1% 0% 14 92.8% 86.2% 92.1% 96.2% 98.0% 94.1% 

BL 96.3% 3.7% 0% 56 92.9% 81.0% 87.6% 92.1% 97.5% 96.7% 

TPHAU 
(proposed) 

SQ 97.1% 2.9% 0% 0 89.5% 94.4% 90.8% 97.3% 98.1% 98.2% 

FL 97.9% 2.1% 0% 2 93.5% 96.4% 92.5% 97.9% 98.2% 97.2% 

BL 99.4% 0.6% 0% 6 92.0% 96.9% 88.4% 98.0% 97.5% 98.8% 

TABLE VIII. ACCURACY OF ERROR IDENTIFICATION MODELS FOR SQUAT (SQ), FORWARD LUNGE (FL), BACKWARD LUNGE (BL). 

Criterion for SQ Accuracy Criterion for FL Accuracy Criterion for BL Accuracy 

Sit hips back towards a 

chair 
92.5% 

Keep the back knee straight 86.3% Keep the back knee straight 93.5% 

Keep the posture tall 93.2% Keep the trunk parallel with the back leg 90.2% 

Lean forward 89.1% 
Length of step 93.8% Length of step 94.2% 

Keep the front shank vertical 91.1% Keep the front shank vertical 88.7% 

TABLE IX. ACCURACY AND THE FALSE POSITIVE RATE (FPR) OF THE TASK RECOMMENDATION MODELS USING DIFFERENT METHODS FOR THE IMBALANCED 

DATA PROBLEM, FOR SQUAT (SQ), FORWARD LUNGE (FL), BACKWARD LUNGE (BL). 

Method 

SQ FL BL 

Accuracy FPR 
Repeat 

Accuracy FPR 
Repeat 

Accuracy FPR 
Repeat Regress Repeat Progress Regress Repeat Progress Regress Repeat Progress 

Original 69.2% 91.7% 95.7% 2.8% 54.5% 88.1% 76.5% 3.2% 63.6% 92.7% 85.0% 3.6% 

Under-Samp [32] 84.6% 75.0% 87.2% 11.1% 81.8% 81.0% 73.7% 9.5% 81.8% 67.2% 85.0% 7.3% 

Over-Repl [33] 76.9% 88.9% 95.7% 11.1% 63.6% 85.5% 75.0% 9.7% 63.6% 92.7% 85.0% 3.6% 

Over-Synth [28] 69.2% 88.3% 95.7% 11.1% 72.7% 83.9% 85.0% 8.1% 72.7% 89.1% 90.0% 3.6% 

Thold-Adj [31] 92.3% 86.1% 91.5% 5.6% 81.8% 68.3% 84.2% 7.9% 81.8% 72.7% 90.0% 7.3% 

Proposed 92.3% 88.9% 95.7% 2.8% 81.8% 85.7% 84.2% 3.2% 81.8% 90.9% 90.0% 5.4% 

No Subjective 
factors 

76.9% 86.1% 95.7% 11.1% 72.7% 85.7% 84.2% 6.3% 27.3% 76.4% 90.0% 7.3% 

accuracy of each sub-action S2/S3/S4 separately. (S1 is not 

evaluated since it is not important for the patient’s performance.) 

For sub-action S2/S3/S4, the sensitivity and specificity are shown 

in Table VII. We can see that the proposed TPHAU algorithm 

improves both sensitivity and specificity for the three tasks. 

Especially for sensitivity, TPHAU enhances the sensitivity for S3 

significantly (e.g., from 78.3% to 94.4% for SQ). For S2 and S4, 

the average sensitivity of TPHAU is sometimes slightly lower 

than the one-phase Viterbi. For example, the sensitivity of S2 in 

SQ is 89.5% using TPHAU, which is slightly lower than the 

sensitivity of 91.1% achieved by the one-phase Viterbi method. 

However, the small difference may be due to the PT’s subjective 

bias when manually segmenting the states. Therefore, we can 

conclude that the overall accuracy of the proposed TPHAU 

algorithm outperforms the one-phase Viterbi method. 

C. Patient Error Identification Results 

To validate the SVM-based patient error identification 

method, we use the same training/test set as Section IV-B. A 

linear SVM classifier is trained for each criterion. The accuracy 

of each criterion is calculated as the ratio of the correctly 

classified samples to the total number of test samples. Table VIII 

shows the results for the three tasks. For most criteria, the 

accuracy is above 90%. For two criteria “Lean forward” in SQ 

and “Keep the front shank vertical” in BL, the accuracy is close 

to 90%. For only one criterion “Keep the back knee straight” in 

FL, the accuracy is 86.3%. Hence, it is reasonable to conclude 

that the SVM-based model can provide accurate error 

identification. 

D. Task Recommendation Results  

To validate the proposed task recommendation approach, we 

build three RF-based task recommendation models for SQ, FL, 

BL separately. To solve the imbalanced data problem, we apply 

the techniques introduced in Section III-D-2: majority under-

sampling (Under-Samp) [32], minority over-sampling with 

replacement (Over-Repl) [33], traditional synthetic minority 

over-sampling using linear interpolation (Over-Synth) [28], 

decision threshold adjustment (Thold-Adj) [31], and the 

proposed hybrid synthetic over-sampling approach (Proposed). 

For under-sampling, the majority classes Repeat and Progress 

are under-sampled to a similar size of the minority class Regress. 

For over-sampling, class Regress is over-sampled to a similar 

size of class Repeat. Since class Progress also has less samples 

than class Repeat for FL/BL, we apply slight over-sampling on 

class Progress. (Between Progress and Repeat, a slight bias 

towards Repeat is preferred as the cost of misclassifying a 

Progress sample as Repeat is just delaying the patient’s progress 

while the reverse error may cause health risks. Therefore, we 

apply slight instead of ordinary over-sampling on class Progress. 

Slight over-sampling means smaller over-sampling rate and 

fewer synthetic samples are created compared with ordinary 

over-sampling.) The accuracy of each class is calculated. 

Besides, the accuracy of class Repeat is affected by two types of 

errors: A) misclassifying Repeat as Regress (which may delay 



patient’s progress), and B) misclassifying Repeat as Progress 

(which may cause risks). We consider the type B error more 

harmful, thus we also calculate the type B error as the False 

Positive Rate (FPR) of class Repeat. 

The original results (without using any method to solve the 

imbalanced data problem) and results by using these techniques 

are shown in Table IX. For the original imbalanced dataset, the 

majority class (i.e., Repeat and Progress for SQ, Repeat for FL 

and BL) achieves high accuracy (around 90%) while the 

accuracy of the minority class Regress is much lower (below 

70%). Among all the methods, Over-Repl and Over-Synth are 

not able to improve the accuracy of class Regress significantly. 

The two methods Under-Samp and Thold-Adj increase the 

accuracy of class Regress, however with the cost of high FPR of 

class Repeat (e.g., FPR of Repeat is 9.5% using Under-Samp 

and 7.9% using Thold-Adj for FL). Overall, our proposed hybrid 

synthetic over-sampling approach outperforms the other 

methods in increasing the accuracy of the minority class while 

maintaining high accuracy and low FPR on the majority class. 

To show the importance of including the subjective factors 

(discussed in Section III-D-1) in the PT’s recommendation, we 

conduct experiments by removing all the subjective factors from 

the features and applying the proposed hybrid over-sampling 

approach. Results are shown in the last row of Table IX. We can 

see that accuracy drops significantly, especially for class Regress. 

It is reasonable since some of the subjective factors (e.g., knee 

pain) indicate patient’s poor health condition, which may be the 

primary reason of PT’s decision to regress the patient. 

V. DISCUSSION 

In this paper, we propose a virtual PT system to enable on-

demand remote training for patients with PD. Patient’s 

movements can be understood by the proposed TPHAU 

algorithm and errors are identified by SVM-based models. To 

enable automated task recommendation, a machine learning-

based model is developed and trained from real patient data, 

which can emulate the human PT’s recommendations. 

Experiments on patient data show that the proposed methods can 

accurately understand the patient’s actions, identify errors, and 

provide task recommendation like a real PT. The proposed 

virtual PT system has the potential of enabling on-demand 

virtual care and significantly reducing cost for both the patients 

and care providers.  

In the future, we plan to incorporate other kinds of sensors, 

like pressure sensors and epidermal sensors, in the training 

systems. Furthermore, the proposed virtual PT system can be 

generalized to other diseases (e.g., stroke) by designing the 

disease-specific training tasks and criteria. However, more 

issues need to be discussed. For example, the detection accuracy 

of Kinect may degrade when tracking more complicated 

movements or patients with walkers and wheelchairs. Besides, 

there might be more advanced progress manners (e.g., progress 

from level 2 to level 4) for some training tasks. All these issues 

will be considered and explored in our future work. 
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APPENDIX: RUNTIME EFFICIENCY OF THE PROPOSED 

ALGORITHMS 

For the three algorithms proposed in this paper, we have 

conducted comprehensive experiments to test their runtime 

efficiency. The running time of each algorithm is tested on an 

Intel Xeon E5-1650 CPU. For each algorithm, there is an 

offline training stage (in which the model is trained on 

training samples) and a test/inference stage (in which the 

trained model is applied on new/test samples). Since the 

proposed virtual PT system is cloud-based, high efficiency is 

needed in the inference stage to provide action understanding, 

error identification, and task recommendation in a timely 

manner. Therefore, the runtime efficiency in the inference 

stage is of greater importance. In this appendix, we will 

present the running time of each algorithm in both training 

and inference stages. 

A. The TPHAU algorithm 

It is compared with the one-phase Viterbi algorithm.  The 

running time of the training and inference stage is shown in 

Table X. The total training time is the total time taken to train 

the model on all the training samples. The average inference 

time is the average running time of applying the model on a 

new/test sample. Since the two algorithms differ only in the 

reference stage, their training time is the same (about 20 s for 

each task). In the inference stage, the proposed TPHAU 

algorithm requires more running time due to the use of the 

second phase to improve the detection accuracy (discussed in 

Section III-B). From Table X we can see that it takes less than 

150 ms to apply the proposed TPHAU algorithm on a 

new/test sample in the inference stage, which means that 

action understanding can be performed in real time. 

TABLE X. RUNNING TIME OF THE ONE-PHASE VITERBI ALGORITHM AND 

THE PROPOSED TPHAU ALGORITHM, FOR SQUAT (SQ), FORWARD LUNGE 

(FL), AND BACKWARD LUNGE (BL). 

Method 

Total Training Time 

(s) 

Average Inference Time 

(ms) 

SQ FL BL SQ FL BL 

One-phase 
Viterbi [23] 

17.3 21.3 20.2 

65.4 102.2 111.8 

Proposed 
TPHAU 

81.9 127.5 139.5 

B. The error identification model 

For error identification, a SVM classifier is used to identify 

whether the patient’s performance is satisfactory or not on a 

PT-defined criterion. Since multiple criteria have been 

defined for each task (discussed in Section III-A), the running 

time of each criterion is summed up as the total running time 

needed to evaluate the patient’s performance on all PT-

defined criteria for this task. We summarize the running time 

in both training and inference stage in Table XI. We can see 

that the training stage requires less than 30 ms for each task. 

The inference stage is very fast, requiring less than 0.1 ms for 

each task. 

TABLE XI. RUNNING TIME OF THE PROPOSED ERROR IDENTIFICATION 

MODEL, FOR SQUAT (SQ), FORWARD LUNGE (FL), AND BACKWARD LUNGE 

(BL). 

Method 
Total Training Time 

(ms) 

Average Inference Time 

(ms) 

SQ FL BL SQ FL BL 

Proposed 

SVM model 
14.9 27.4 27.1 0.02 0.04 0.05 

C. The task recommendation model 

The proposed task recommendation model is based on the 

random forest classifier. Because of the imbalanced data 

problem (discussed in Section III-D-2), we have proposed the 

hybrid synthetic over-sampling approach to generate 

synthetic samples for the minority class in the training stage 

and have shown its results compared with other methods 

(discussed in Section III-D-2 and Section IV-D). Table XII 

shows the total training time required by each method for the 

imbalanced data problem. We can see that the training time 

of the traditional synthetic over-sampling approach (Over-

Synth) and the proposed hybrid synthetic over-sampling 

approach (Proposed) is higher than the other techniques 

because these two methods requires extra steps to generate 

the new synthetic samples. For the inference stage, the 

average inference time is the same for all the methods since 

these methods are applied only in the training stage to address 

the imbalanced data problem. We can see that the inference 

stage of the task recommendation model requires only 4 ms 

for each task. 

TABLE XII. RUNNING TIME OF THE TASK RECOMMENDATION MODELS 

USING DIFFERENT METHODS FOR THE IMBALANCED DATA PROBLEM, FOR 

SQUAT (SQ), FORWARD LUNGE (FL), AND BACKWARD LUNGE (BL). 

Method 

Total Training 

Time (s) 

Average Inference 

Time (ms) 

SQ FL BL SQ FL BL 

Original 2.9 3.2 3.1 

3.9 4.0 4.1 

Under-Samp [32] 2.8 3.0 2.8 

Over-Repl [33] 2.9 3.2 3.0 

Over-Synth [28] 6.1 13.5 11.2 

Thold-Adj [31] 2.9 3.1 3.1 

Proposed 6.6 15.9 14.0 

No Subjective factors 5.1 10.0 9.0 

From the results presented above, we can see that the 

running time of the three proposed models (i.e., the TPHAU 

algorithm for patient action understanding, the SVM-based 

error identification model, and the task recommendation 

model) in the inference stage is about 150 ms in total. It means 

that the virtual PT system can evaluate the patient’s 

performance and provide task recommendation in about 150 

ms after the patient completes a training task, which enables 

efficient and real-time remote care.

 


