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Abstract – In this paper, we present a personalized deep learning 
approach to estimate blood pressure (BP) using the 
photoplethysmogram (PPG) signal. We propose a hybrid neural 
network architecture consisting of convolutional, recurrent, and 
fully connected layers that operates directly on the raw PPG time 
series and provides BP estimation every 5 seconds. To address the 
problem of limited personal PPG and BP data for individuals, we 
propose a transfer learning technique that personalizes specific 
layers of a network pre-trained with abundant data from other 
patients. We use the MIMIC III database which contains PPG and 
continuous BP data measured invasively via an arterial catheter to 
develop and analyze our approach. Our transfer learning 
technique, namely BP-CRNN-Transfer, achieves a mean absolute 
error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, 
respectively, outperforming existing methods. Our approach 
satisfies both the BHS and AAMI blood pressure measurement 
standards for SBP and DBP. Moreover, our results demonstrate 
that as little as 50 data samples per person are required to train 
accurate personalized models. We carry out Bland-Altman and 
correlation analysis to compare our method to the invasive arterial 
catheter, which is the gold-standard BP measurement method. 

Index Terms – Deep learning, Transfer Learning, Wearables, 
Blood Pressure, Photoplethysmogram 

I. INTRODUCTION 
     Blood pressure (BP) is the most important indicator of 
cardiovascular health. High blood pressure, or hypertension, 
affects 30% of American adults and contributes to over 410,000 
deaths per year [1,2]. This condition has been called “the silent 
killer,” as typically no symptoms are recognized before significant 
damage has already been done to the heart and arteries [3]. BP is 
defined as the pressure exerted on the arteries as blood is pumped 
throughout the body and is measured in millimeters of mercury 
(mmHg). Systolic (SBP) and diastolic blood pressure (DBP) are 
the primary metrics used to measure BP, which are defined as the 
maximum and minimum blood pressure, respectively, during a 
pulse.  
     For accurate diagnosis and treatment of hypertension, regular 
BP measurement is necessary. According to the American College 
of Cardiology, increased at-home BP monitoring is essential for 
recognizing inconsistencies in measurements taken in a medical 
setting [4]. Currently, the predominant device for measuring BP is 
a mercury sphygmomanometer which involves attaching an 
inflatable cuff around the upper arm [5]. This process requires 

significant user effort, which limits the frequency of BP 
measurements and increases the chance of measurement error. 
The use of an arterial catheter can provide continuous BP 
measurement; however, it is highly invasive and impractical for 
daily life. On the other hand, wearable devices are widely used for 
non-invasive, continuous monitoring of biological information 
[6]. Continuous and automated blood pressure estimation could be 
incorporated into one’s daily routine to obtain better insight and 
detect abnormal BP fluctuation. 
     One prominent approach is to estimate BP with the 
photoplethysmogram (PPG) sensor, which is available in most 
wrist wearables. The principle of the PPG sensor is to optically 
measure the dilation and constriction of blood vessels. The 
resulting PPG signal is a fusion of heart activity, vascular 
relaxation processes, and microcirculation system status, making 
its time-frequency domain information rich and diverse [7]. In this 
paper, we propose a deep learning approach to personalized BP 
estimation based on the PPG signal.  

A. Related Work       
     Traditional machine learning approaches to PPG-based BP 
estimation focus on pulse wave analysis (PWA) methods. PWA 
involves extracting both time and frequency domain features from 
the PPG series and using these hand-crafted features as inputs to 
the BP estimation model. [8] extracts nineteen features from each 
PPG cycle based on its morphology. They use these features and 
the corresponding SBP and DBP values to train different 
regression models. Their approach lacks personalization, which 
may be the reason for higher estimation errors since these features 
have a person-specific response to BP [9]. [10] and [11] both use 
a random forest as their BP estimation model. [10] uses a feature 
selection algorithm to determine which morphological features are 
most useful for BP estimation and found that many features are 
irrelevant. Since the PPG signal is highly sensitive to different 
sources of noise [12] and its morphology can range from person 
to person, it is difficult to detect the key points in the signal 
required for feature engineering. In addition, manually engineered 
features can prove to be redundant or irrelevant in the PPG-BP 
modeling process. As a result, the information contained in the 
PPG signal may not be fully utilized. 
     In our previous work [13], we propose a method for 
personalized BP estimation using wavelet decomposition to 
extract time-frequency domain features from the PPG signal. 
These features are then used to train a random forest model for 
SBP and DBP estimation. Unlike previous approaches which 
extract features from the PPG signal on a per cycle basis, wavelet 
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decomposition captures dependencies between cycles in the time-
frequency domain. While this approach produced accurate 
estimations, 10 hours of continuous BP and PPG data are required 
per person for training. Although PPG data can be continuously 
measured, large amounts of BP data are difficult to acquire outside 
a hospital setting.  
     In order to address the limitations of these previous methods, 
we propose a deep learning approach that utilizes a novel transfer 
learning technique that requires as little as 50 samples to train 
accurate personalized models. Deep learning models are widely 
used to model nonlinear relationships and have been applied to 
various tasks involving physiological signals [14-16]. Deep 
learning addresses the challenges of manual feature engineering 
and information loss by directly learning from the raw PPG data. 
[17-19] build deep learning models for PPG-based BP estimation 
and utilize personalization techniques to improve performance. 
[17] uses a spectro-temporal neural network that takes a 5 second 
PPG segment and its corresponding spectrogram as inputs to their 
model. When personalizing their model, the SBP and DBP MAE 
decrease by 39% and 44%, respectively, indicating that the 
relationship between BP and PPG is subject-dependent. [18] 
utilizes a Siamese neural network to estimate the offset from a 
calibration PPG-BP sample. The network uses a series of 
convolutional layers to derive an effective representation of the 
PPG series and achieves high estimation performance. [19] 
proposes a convolutional neural network (CNN) for BP estimation 
and utilizes transfer learning to personalize their model to each 
patient. Their proposed model requires 4000 personal BP samples 
for transfer learning to achieve high performance. Such a large 
number of personal BP samples is not possible to collect outside a 
hospital setting.  
     Transfer learning focuses on storing knowledge gained from 
solving one problem (i.e., source domain) and applying it to a 
different but related problem (i.e., target domain), which usually 
contains a small number of data samples to train a model [20]. We 
propose to use a pre-trained model with abundant PPG and BP 
data from a large pool of source patients to drastically reduce the 
required data for new patients, as illustrated in Figure 1. 
     Deep learning models are conducive to transfer learning due to 
the modularity of their architectures. In this work, we develop our 
architecture, namely Blood Pressure – Convolutional Recurrent 
Neural Network (BP-CRNN), based on the Convolutional, Long 

Short-Term Memory, fully connected Deep Neural Network 
(CLDNN) [21], one of the popular hybrid artificial neural network 
(ANN) architectures. Our proposed method, namely BP-CRNN-
Transfer, personalizes specific network layers during transfer 
learning to reduce the number of required training samples. Our 
contributions are as follows:  
• We propose a hybrid neural network consisting of 

convolutional and recurrent layers which operate directly on 
the raw PPG time series to reduce information loss and 
effectively model the PPG-BP relationship. 

• We propose a novel transfer learning technique that 
personalizes specific layers of a pre-trained network to 
improve the performance of PPG-based BP estimation, 
demonstrating that PPG-BP data of other patients can be 
used to enhance the modeling of a new patient’s PPG-BP 
relationship. 

• We demonstrate that the proposed transfer learning 
technique improves BP estimation performance by 23.3% 
for SBP and 19.1% for DBP. We verify our approach is 
consistent with the gold-standard BP measurement method 
through Bland-Altman and correlation analysis. 

• We show that our proposed transfer learning method 
requires 10x less personal PPG-BP data to achieve 
performance equivalent to that of a new personalized model 
trained with abundant data. 

     The rest of the paper is organized as follows. In Section II, data 
acquisition and our network architecture are presented. We then 
detail the proposed transfer learning technique. In Section III, the 
performance of the proposed method is evaluated. We compare 
how model performance changes for different numbers of training 
samples, with and without using transfer learning. Finally, we 
conclude the paper in Section IV.   

II. METHOD 
     In this section, we first describe the MIMIC III Matched Subset 
database and the PPG and BP preprocessing steps. We then 
present the network architecture and transfer learning technique. 

A. Data Acquisition and Preprocessing 
     Data was obtained from the Multiparameter Intelligent 
Monitoring in Intensive Care III (MIMIC III) Matched Subset 
database [22,23]. This database contains records for thousands 
of intensive care unit patients. Records in this database have 
been matched to records from the MIMIC III Clinical database 
[24], which includes de-identified demographic data. The 
waveforms collected include ECG, respiration, continuous blood 
pressure, and PPG signals each sampled at 125 Hz. The arterial 
blood pressure (ABP) was directly measured from a radial artery 
using an invasive catheter. A fingertip sensor was used to 
measure the PPG data. Only patients with sufficient PPG and 
blood pressure data were considered for this study. We trained 
and tested our PPG-based BP estimation method on 100 
randomly selected patients who had at least 10 hours of high-

Figure 1. Transfer learning overview for PPG-based BP estimation. 
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quality data after preprocessing. Out of these 100 patients, 56 are 
male and 44 are female. The age of the patients ranges from 21 
to 82 with a mean age of 58.  
     Our objective is to operate directly on the raw PPG data and 
estimate SBP and DBP simultaneously. The first stage of data 
preprocessing involves splitting the raw PPG signal into 5-
second segments and down sampling from 125 Hz to 25 Hz as 
this covers the important frequency components [25]. Next, each 
PPG segment is labeled with the mean SBP and DBP during that 
segment. SBP and DBP values are obtained from the raw ABP 
series using a peak detection algorithm as illustrated in Figure 2. 
Figure 3 describes the distribution of SBP and DBP samples. 
Some sections of the PPG series are corrupted due to motion 

artefacts or because the patient was not properly wearing the 
sensor. In order to discard these corrupted sections, an 
autocorrelation filter is implemented. Since an uncorrupted PPG 
segment should maintain a high degree of periodicity, it is 
expected that the signal’s autocorrelation is high when the 
segment is offset by multiples of the cycle length. Figure 4 
displays both an uncorrupted and corrupted PPG segment and 
the corresponding autocorrelation signals. The peaks in the 
autocorrelation signal are used to determine the quality of each 
PPG segment. An empirical threshold of 0.7 was set on the 
maximum autocorrelation. The filtered PPG segments are then 
normalized to zero mean and unit variance. Using this labeled 
dataset, we train our proposed personalized deep neural 
networks for BP estimation.  
B. Network Architecture 

We propose a hybrid network architecture, namely BP-
CRNN, that makes use of convolutional layers, a gated recurrent 
unit (GRU), and fully connected (FC) layers. This is an 
adaptation of the CLDNN network presented in [21]. Instead of 
a LSTM, we use a GRU which behaves nearly identically with 
one fewer equation. In addition, we pass the outputs of both the 
first and third convolutional layers to the GRU. Figure 5 displays 
our architecture. The rationale is as follows: The convolutional 
layers serve as feature extractors for the raw PPG input, while 
the GRU models the temporal dependencies between these 
features. The GRU’s outputs are then fed to the fully connected 
layers which transform the features into a space that makes the 
BP easier to estimate.    
     The input PPG segment is convolved with 50 different filters 
to generate 50 outputs in the temporal-feature domain. The 
following two convolutional layers also contain 50 filters, which 
are convolved with these features to generate the final features 
from the PPG segment. Each layer is followed by a rectified 
linear unit (ReLU) activation function. The output feature maps 
of each convolutional layer are calculated using the equation:  
 

                  𝑥𝑥𝑗𝑗𝑙𝑙 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ��∑ 𝑥𝑥𝑖𝑖𝑙𝑙−1 ∗  𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 � + 𝑏𝑏𝑗𝑗𝑖𝑖�                     (1) 

Figure 2. Output of peak detection algorithm – SBP and DBP vs. raw 
ABP time series. 

 

Figure 4. Comparison of (a) an uncorrupted PPG segment and (b) its corresponding autocorrelation signal to (c) a corrupted 
PPG segment and (d) its corresponding autocorrelation signal. 

 

Figure 3. Distribution of SBP and DBP samples among the 100 patients. The 
blue dashed lines indicate the mean SBP/DBP and the red dashed lines 

correspond to 1 standard deviation above and below the mean SBP/DBP. 
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where 𝑥𝑥𝑗𝑗𝑙𝑙 is the 𝑗𝑗𝑡𝑡ℎ map generated by the convolutional layer l, 
𝑥𝑥𝑖𝑖𝑙𝑙−1 is the 𝑖𝑖𝑡𝑡ℎ feature map of the previous convolutional layer 
l−1, 𝑘𝑘𝑖𝑖𝑖𝑖  represents the 𝑖𝑖𝑡𝑡ℎ trained convolution kernel, 𝑏𝑏𝑗𝑗𝑖𝑖  is the 
additive bias, while ∗ represents the convolution operation and 
Relu is the activation function. 
     Stacking convolutional layers results in a learned feature 
hierarchy, where initial layers extract lower-level features and 
deeper layers extract higher-level features [26]. We varied the 
number of convolutional layers from 1 to 5 and found that 3 
convolutional layers resulted in the best performance. In order to 
provide both low and high-level features to the GRU to process 
simultaneously, the outputs of the first and third convolutional 
layers are concatenated. Since each convolutional layer contains 
50 filters, 100 extracted feature series are passed to the GRU. 
The extracted features at each level are padded such that they 
have the same length as the input PPG sequence. As a result, the 
input to the GRU has a shape of 100 ∗ 𝑡𝑡𝑛𝑛 where 𝑡𝑡𝑛𝑛 is the length 
of the input PPG segment. The GRU is able to learn the temporal 
relationship between these multiple feature channels. A GRU 
consists of gating units that control the flow of information 
within the module [27]. The following equations describe the 
operation of the GRU: 
 
                             𝑧𝑧𝑡𝑡 = 𝜎𝜎�𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑧𝑧)ℎ𝑡𝑡−1�                         (2) 

                        𝑟𝑟𝑡𝑡 = 𝜎𝜎�𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟)ℎ𝑡𝑡−1�                         (3) 

ℎ𝑡𝑡
′ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑊𝑊(ℎ)𝑥𝑥𝑡𝑡 + 𝑈𝑈(ℎ)(𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1)�              (4) 

                   ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ⊙ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡
′                   (5)                                            

      
     In Eq. (5), the final GRU activation ℎ𝑡𝑡 is a linear interpolation 
between the previous activation ℎ𝑡𝑡−1  and candidate activation 
ℎ𝑡𝑡′  where the update gate 𝑧𝑧𝑡𝑡  determines how much the unit 
updates its activation. ⊙ represents element-wise multiplication. 
Eq. (2) describes the update gate 𝑧𝑧𝑡𝑡 calculation, where 𝑊𝑊(𝑧𝑧) and 
𝑈𝑈(𝑧𝑧) are each a set of trainable weights that process the input 𝑥𝑥𝑡𝑡 
and the previous activation ℎ𝑡𝑡−1, respectively. σ represents the 
sigmoid function. The candidate activation ℎ𝑡𝑡′  is calculated in Eq. 
(4), where 𝑟𝑟𝑡𝑡 represents the reset gate, 𝑊𝑊(ℎ) and 𝑈𝑈(ℎ) represent 
trainable sets of weights, and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ  represents the hyperbolic 
tangent function. When 𝑟𝑟𝑡𝑡 is close to 0, the reset gate enables the 
unit to forget the previous activation ℎ𝑡𝑡−1 when calculating the 
candidate activation ℎ𝑡𝑡′  [27]. In Eq. (3), the reset gate 𝑟𝑟𝑡𝑡  is 
calculated similarly to the update gate. 𝑊𝑊(𝑟𝑟) and 𝑈𝑈(𝑟𝑟) represent 
the reset gate’s trainable weights that process the input 𝑥𝑥𝑡𝑡 and 
the previous activation ℎ𝑡𝑡−1, respectively. At each time step, a 
100-element vector is processed by the GRU, where each 
element corresponds to a feature value. A GRU activation size 
of 25 was experimentally determined to produce high 
performance, resulting in an output of shape 25 ∗ 𝑡𝑡𝑛𝑛 . 
    The last two network layers are fully connected layers that 
carry out the final BP estimation. FC layers are effective at 
mapping features into a more separable space [26]. The 
activations of the GRU at each time step are flattened into a 
single vector for the first FC layer to the process. The output of 
the network is a 2-dimensional vector corresponding to the 

estimated SBP and DBP values. A ReLU activation function is 
again used after each FC layer. Batch normalization [28] is 
utilized to stabilize the input distribution of each layer during 
training. This reduces internal covariate shifts and results in 
faster training. Overall, this architecture realizes the high level 
of complementarity these individual neural network layers 
exhibit.   

C. Transfer Learning                  
     To train deep neural networks, a large amount of training data 
is required to learn effective feature representations. Since our 
goal is to train personalized PPG-based BP estimation models, this 
means many data samples from a single individual are required. 
While PPG data can continuously be collected via a noninvasive 
wearable, BP data is more difficult to collect. In order to address 
this, we propose a transfer learning technique that results in high 
performance even when limited data from the target patient is 
available.  
     Transfer learning has most notably been applied to computer 
vision (CV) and natural language processing (NLP) tasks. [29] 
argues that physiological signals share two important 
commonalities with CV and NLP: consistency and complexity. 
Physiological patterns are consistent across individuals but 
complex enough that learning effective feature representations is 
nontrivial. [30] describes how initial convolutional layers extract 
lower-level features, which can be shared across tasks, while 

Figure 5. Proposed BP-CRNN architecture– Convolutional layers serve as 
feature extractors, GRU models temporal relationship between features, and 

fully connected layers transform GRU outputs to SBP and DBP. 
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deeper layers generate higher-level features which are task-
specific. In addition, training with different tasks (patients in our 
case), can result in a more powerful representation of the data that 
could not be learned from a single task (patient). Inspired by 
[29,30], we first train our model with PPG-BP data from a variety 
of individuals to learn robust feature extractors that can be 
transferred between patients. 
     Figure 6 illustrates our proposed transfer learning process, 
namely BP-CRNN-Transfer. PPG and BP data from n source 
patients is used to pre-train a BP-CRNN model. This network is 
then used as an initialization for finetuning. In order to personalize 
the model, data from the target patient is used to finetune specific 
layers in the network. The last convolutional layer (Conv3) and 
last fully connected layer (FC2) are retrained using the target 
patient’s data. In addition, the batch normalization parameters are 
updated to account for the different data distribution of the target 
patient. It was experimentally determined that retraining these two 
specific layers resulted in the most robust transfer learning 
performance. Table III in Sec. III (B) describes the transfer 
learning performance for different combinations of personalized 
layers. By retraining the final convolutional layer, the network can 
learn high-level PPG feature representations specific to the 
individual. Finetuning the last FC layer allows the model to learn 
the relationship between the extracted features and BP for the 
patient of interest. Our BP-CRNN model consists of 
approximately 250,000 trainable parameters, where 18,000 of 
these parameters are within the two layers we finetune. This 
indicates that we only need to update 7.2% of the network 
parameters learned from the source dataset. By retraining a small 
percentage of parameters, we prevent the network from overfitting 
to the limited target training data.  

III. RESULTS AND DISCUSSION 
     In this section, we describe the experiment settings and 
compare our personalized BP estimation results with and without 
transfer learning to previous methods. We examine how 
performance is affected by the number of personal data samples 
used during training and demonstrate that our transfer learning 

approach can achieve high performance with limited data. We 
verify our approach is consistent with the gold-standard BP 
measurement method through Bland-Altman and correlation 
analysis. 

A. Experiment Setting 

     We implement and evaluate our deep learning model using the 
Pytorch library [31] in the python environment on an Intel i5 
3.2GHz quad-core and 16GB RAM computer. Nvidia GeForce 
GPUs are utilized to carry out network training. 1-dimensional 
filters of size 7 were implemented for each convolutional layer and 
zero padding was used to maintain the input PPG dimension. 
Based on the results from [32], a large range in the number of 
filters will result in similar performance before overfitting occurs. 
We chose to use 50 filters at each layer. All networks are trained 
using the Adam optimizer [33]. 10 hours of PPG and BP data are 
selected from each patient to be used in our experiments. 5-fold 
cross-validation is carried out for each patient separately. This 
involves shuffling each patient’s data and using 5 different train, 
validation, and test splits for each experiment. Each validation and 
test set comprises of 1 hour of PPG-BP data. The number of 
samples included in the training sets is varied from 50 to 3600 
samples in order to assess how performance is affected by training 
set size, which is detailed in Sec. III (C). Data separation between 
patients is maintained to ensure that no personal data from the 
target patient is used in pretraining for transfer learning. Mean 
absolute error (MAE) is calculated and used as our evaluation 
metric. For each experiment, we provide the average of MAEs 
over all patients. MAE is defined as follows:   
 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ �𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 −𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 �𝑛𝑛

𝑖𝑖=1

𝑛𝑛
                           (6) 

     For our non-transfer method, namely BP-CRNN, separate 
personalized models are trained for each of the 100 patients. Each 
model is trained only using data from the individual patient. Since 
we do not use transfer learning, the parameters of the initial model 
are randomly initialized and all layers are updated during training. 

Figure 6. Proposed transfer learning method, namely BP-CRNN-Transfer. A BP-CRNN model is first pretrained using abundant 
source patient data. The final convolutional layer and fully connected layer are finetuned with the target patient’s data. 
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To train these models, we use 0.01 as the learning rate and 32 as 
the batch size.  
     For testing our transfer learning technique, namely BP-CRNN-
Transfer, the initial model for the first 50 patients is trained with 
the data of the last 50 patients, and vice versa. This ensures that no 
data from the target patient is used during pretraining. When 
training the initial model for transfer learning, the learning rate and 
batch size are set to 0.001 and 256, respectively. In this case, the 
learning rate can be decreased and the batch size increased 
because there is much more training data, resulting in a greater 
number of update steps per epoch. When fine-tuning the pre-
trained model to the target patient, the learning rate and batch size 
are set back to 0.01 and 32, respectively, and only the specific 
layers mentioned in Sec. II (C) are updated. Early stopping [34] is 
implemented for every training session to save the learned 
network weights once the error on the validation set begins to 
increase. Each network is trained 5 times and the results averaged 
in order to account for differences in model convergence. Our 
model’s inference time is 0.32 ± 0.09 (mean ± std) seconds. This 
time is based on implementation on a Nvidia GPU. In our future 
work, we plan to investigate a lightweight model that can be 
directly implemented on a wearable device and research the 
tradeoffs between model accuracy, inference time, and memory 
requirements. 

B. BP Estimation Results 

     We compare the BP estimation performance of our 
personalized models without and with transfer learning to that of 
an aggregate model and previous methods in Table I. BP-CRNN 
and BP-CRNN-Transfer correspond to our personalized approach 
without and with transfer learning, respectively. The aggregate 
model, namely Aggregate BP-CRNN, is trained in the same 
fashion as the pre-trained models for transfer learning as described 
in the previous section. However, no personalization or transfer 
learning is applied. The high estimation error of Aggregate BP-
CRNN demonstrates the requirement for personalization in order 
to effectively model the PPG-BP relationship. 
     Next, we compare our proposed approach against a dummy 
regressor, namely Mean Regressor, which always predicts the 
mean SBP and DBP from the target patient’s training set. This is 
an important comparison to make as there may be a subject with 
relatively constant BP, in which case the BP-CRNN’s estimation 
errors will be low [17]. This comparison is drawn to ensure that 
our model has learned more than simply estimating the patient’s 
mean BP. In addition, we compare our approach to our previous 
work and to the latest deep learning approaches that propose 

personalized BP estimation methods. In our previous work, we 
apply wavelet decomposition to the PPG series for feature 
engineering and train a random forest (RF) as our BP estimation 
model [13]. As mentioned in the introduction section, [17] trains 
a spectro-temporal neural network using personal data samples 
from each patient. [18] uses a Siamese neural network that takes a 
raw PPG segment as input and estimates the BP offset from a 
calibration PPG-BP sample. [19] trains a convolutional neural 
network for BP estimation and utilizes transfer learning to 
personalize their model to each patient. 
     In our current approach, a model is trained for each patient 
using both a non-transfer learning and transfer learning approach, 
as described in the experiment setting. Without transfer learning, 
namely BP-CRNN, we achieve an average MAE of 4.59 and 2.72 
mmHg for SBP and DBP, respectively. As shown in Table I, even 
without using transfer learning, our proposed model achieves 
improvement in SBP performance compared to the methods 
presented in [13,17,18]. We attribute this improvement to the 
complementarity of our network architecture and its ability to 
reduce information loss by operating directly on the raw PPG 
series. With the transfer learning approach, namely BP-CRNN-
Transfer, the MAEs decrease to 3.52 and 2.20 mmHg 
corresponding to a 23.3% and 19.1% increase in performance for 
SBP and DBP estimation as compared to our non-transfer method. 
The performance achieved by our BP-CRNN-Transfer method is 
also better than our previous approach RF-wavelet [13] as well as 
previous deep learning methods [17-19]. We achieve a 27.9% and 
15.7% improvement from [13], 62.7% and 68% improvement 
from [17], and 40.8% and 35.5% improvement from [18] for SBP 
and DBP, respectively. We achieve a 13.3% improvement for SBP 

Table I. Comparison of BP estimation methods. 

Method SBP MAE (mmHg) DBP MAE (mmHg) 

Aggregate BP-CRNN 16.3 8.46 

Mean Regressor 9.07 4.58 

RF - Wavelet [13] 4.88 2.61 

Spectro-Temporal NN 
[17] 

9.43 6.88 

Siamese NN [18] 5.95 3.41 

CNN-Transfer [19] 4.06 2.20 

BP-CRNN 4.59 2.72 

BP-CRNN-Transfer 3.52 2.20 

 

Table II. Comparison of proposed method to BHS Standards. Both our non-transfer (BP-CRNN) and transfer learning (BP-CRNN-Transfer) 
approaches achieve Grade A performance for SBP and DBP. 

 SBP  DBP  

Method ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg Grade ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg Grade 

BP-CRNN 72% 92% 97% A 89% 98% 99% A 

BP-CRNN-
Transfer 

80% 95% 98% A 93% 99% 100% A 
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MAE and the same DBP MAE as compared to [19]. We attribute 
this increase in performance to the specific layers we finetune 
during transfer learning and our network’s ability to effectively 
store information contained in source patients’ data. The BP-
CRNN-Transfer MAE is well under the Mean Regressor MAE, 
which is 9.07 mmHg for SBP and 4.58 mmHg for DBP, indicating 
that the model can learn a meaningful relationship between PPG 
and BP. Since [19] achieves the closest performance to our 
proposed method, we reimplement their approach in order to 
perform statistical tests. We carry out a Paired Student’s t-Test 
separately for each patient to assess the statistical significance of 
the difference in estimation errors between our method and [19]. 
For 84 out of the 100 patients, the difference in performance is 
statistically significant at the level 0.05 for both SBP and DBP.  
     We evaluate our proposed method according to the British 
Hypertension Society (BHS) and the Association for the 
Advancement of Medical Instrumentation (AAMI) standards for 
BP measurement. The BHS standard assigns a performance grade 
based on the percentage of estimated BP samples that fall within 
5, 10, and 15 mmHg of the corresponding reference BPs. To 
achieve Grade A accuracy, at least 60/85/95% of the estimated BP 
samples must have an absolute difference of  ≤ 5/10/15 mmHg 
from the reference BPs, respectively [35]. Table II describes the 
results of our non-transfer and transfer learning approaches 
according to the BHS standards. For our non-transfer approach, 
72/92/97% of estimated SBP samples have an absolute difference 
≤ 5/10/15 mmHg, respectively. When using our transfer learning 
approach, these percentages increase to 80/95/98% of estimated 
SBP samples. For our non-transfer approach, 89/98/99% of 
estimated DBP samples have an absolute difference ≤ 5/10/15 

mmHg, respectively. When using our transfer learning approach, 
these percentages increase to 93/99/100% of estimated DBP 
samples. Both approaches achieve Grade A performance 
according to the BHS standard for SBP and DBP. 
     The AAMI standard for accurate BP measurement requires that 
the mean error between estimated and reference BPs is ≤ 5 mmHg 
and the standard deviation (SD) of errors is ≤ 8 mmHg [36]. Figure 
7 displays the error distribution for SBP and DBP using both our 
non-transfer and transfer learning approach over all patients. Our 
BP-CRNN (non-transfer) approach achieves a mean error and 
standard deviation of -0.07 ± 5.49 mmHg and -0.05 ± 3.24 mmHg 

Table III. Comparison of transfer learning performance when finetuning 
different network layers. 

BP-CRNN Layers 
Personalized 

SBP MAE 
(mmHg) 

DBP MAE 
(mmHg) 

FC1, FC2 5.16 2.87 

FC2 4.41 2.63 

Conv1, Conv2, Conv3, GRU, 
FC1, FC2 

4.37 2.41 

Conv3, FC1, FC2 4.32 2.46 

Conv2, Conv3, GRU, FC1, 
FC2 

4.28 2.38 

Conv3, GRU, FC1, FC2 4.25 2.37 

Conv3, GRU, FC2 3.90 2.28 

Conv3, FC2 3.84 2.24 

 

Figure 7. Distributions of (a) SBP and (b) DBP errors using our non-transfer approach compared to distributions of (c) SBP and (d) DBP 
errors using our transfer learning approach. The blue dashed lines indicate the mean error and the red dashed lines correspond to 1 

standard deviation above and below the mean error. 
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for SBP and DBP, respectively. Our BP-CRNN-Transfer 
approach achieves a mean error and standard deviation of 0.11 ± 
4.56 mmHg and 0.05 ± 2.82 mmHg for SBP and DBP, 
respectively. The mean error for each approach is approximately 
0 mmHg. When using our transfer learning approach, the SD of 
errors decreases from 5.49 to 4.56 mmHg and 3.24 to 2.82 mmHg 
for SBP and DBP, respectively. While both approaches satisfy the 
AAMI standard, our transfer learning approach achieves the 
requirement by a larger margin.     
     Table III compares the transfer learning performance when 
different sets of network layers are finetuned using target patient 
data. We use the first 10 patients in our dataset as target patients 
for this experiment. The source model is pre-trained with the last 
50 patients’ data. These results are averaged over the 10 target 
patients. Evidently, retraining only the final convolution layer 
(Conv3) and fully connected layer (FC2) results in the best 
transfer learning performance. If the Conv3 layer is not 
personalized, the SBP MAE increases from 3.84 to 4.41 mmHg 
and the DBP MAE increases from 2.24 to 2.63 mmHg. This 
demonstrates the importance of personalizing the last 
convolutional layer in order to learn higher level features specific 
to the individual. One interesting observation is that, on average, 
it is better not to retrain the GRU with the target data. The average 
SBP and DBP MAEs when finetuning the GRU layer with the 
Conv3 and FC2 layer are 3.90 and 2.28 mmHg, respectively. If the 
GRU is not personalized, the average SBP and DBP MAEs are 
3.84 and 2.24 mmHg, respectively. This may be because the GRU 

is modeling the temporal relationship between features, and not 
the features themselves. This indicates that the temporal modeling 
of PPG features is transferable across individuals in addition to the 
lower-level convolutional filters.  
     Table IV compares the transfer learning performance when 
different numbers of source patients are used for pretraining the 
initial model. Like the previous experiment, we use the first 10 
patients in our dataset as target patients for this experiment and the 
results are averaged over these patients. We compare the transfer 
performance when using 10, 30, 50, 70, and 90 source patients for 
pretraining. We finetune the “Conv3, FC2” layer set during the 
transfer learning step. We observe that the MAEs for SBP and 
DBP decrease as more source patients are included but level off at 
50 patients. The MAEs for SBP estimation when using 50, 70, and 
90 source patients are 3.84, 3.85, and 3.85 mmHg, respectively. 
The MAEs for DBP estimation when using 50, 70, and 90 source 
patients are 2.24, 2.24, and 2.23 mmHg, respectively. These 
results demonstrate that including more than 50 source patients 
does not enhance the transfer learning performance. This indicates 
that there is sufficient variability and information among 50 
patients to learn effective transferable features for PPG-BP 
estimation.  

C. Effect of Training Set Size 

     Next, we discuss how our non-transfer and transfer learning 
performances change based on the number of target patient 
training samples. We test the model performance using 5 different 
amounts of personal training data: 3600, 1800, 360, 100, and 50 
data samples. Since each input PPG segment is 5 seconds, 3600 
samples correspond to 5 hours of data. For each case, the 
validation and test sets are kept the same in order to ensure a fair 
comparison.  Figure 8 displays the relationship between the 
number of training samples and SBP (left) and DBP (right) 
estimation performance. The blue curves correspond to our non-
transfer approach, namely BP-CRNN, while the red curves 
correspond to our transfer method, namely BP-CRNN-Transfer. 
Each point is labeled with the number of training samples and 
corresponding MAE. The black lines represent the performance of 
the dummy Mean Regressor, which always predicts the mean SBP 

Figure 8. BP estimation performance for different training set sizes. The labeled points for 360 and 3600 training samples indicate that 
our BP-CRNN-Transfer method can achieve equivalent performance to the non-transfer BP-CRNN method with 10x less data. 

 

Table IV. Comparison of transfer learning performance when pretraining 
with different number of source patients. 

# Source Patients SBP MAE (mmHg) DBP MAE (mmHg) 

10 4.07 2.36 

30 3.96 2.28 

50 3.84 2.24 

70 3.85 2.24 

90 3.85 2.23 
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and DBP of the target patient’s training set. Again, we use the 
Mean Regressor’s performance as a reference to ensure our model 
is learning more than simply estimating with the patient’s mean 
SBP and DBP. 
     Evidently, using transfer learning improves performance for 
each number of training samples. As the number of training 
samples is reduced, the MAE increases for both approaches, but 
at a lower rate when utilizing transfer learning. When training with 
100 data samples using the non-transfer approach, the MAE 
increases to 8.15 mmHg for SBP and 4.48 mmHg for DBP. In this 
case, the error is approaching that of the Mean Regressor, meaning 
the model has difficulty learning the PPG-BP relationship. If 
further reduced to 50 training samples, the model is unable to 
converge. This is why there is no point plotted for 50 samples 
when using our non-transfer approach. On the other hand, when 
using 100 training samples, the performance of our transfer 
learning approach for SBP and DBP is 5.52 and 3.38 mmHg, 
respectively. This corresponds to a 32.3% and 24.6% performance 
improvement for SBP and DBP estimation when using our 
transfer learning technique. By comparing the non-transfer 
approach using 3600 samples to the transfer approach using 360 
samples, we can see that the MAE is similar for SBP (4.59 vs. 4.56 

mmHg) and DBP (2.72 vs. 2.80 mmHg) estimation. This indicates 
that 10x less personal PPG-BP data is required by our proposed 
transfer learning approach to achieve performance equivalent to 
that of a new personalized model trained with abundant data. For 
50 training samples the model is able to converge using transfer 
learning, resulting in a MAE of 5.86 mmHg for SBP and 3.59 
mmHg for DBP. The cuff-based standard is a MAE of ≤5 mmHg 
for both SBP and DBP [37]. Hence, our transfer learning 
technique satisfies this requirement for DBP and misses this 
requirement by 0.86 mmHg for SBP, when using 50 training 
samples. These results demonstrate that accurate personalized 
models can be trained even with limited personal PPG and BP 
data.    

D. Bland-Altman and Correlation Analysis 

     Bland-Altman analysis is a technique for comparing a new 
measurement device or procedure to an approved method [38]. 
The goal is to assess the extent to which two methods designed 
to measure the same parameter are in agreement. Here, the two 
methods for BP measurement being compared include the 
invasive arterial catheter and our BP-CRNN-Transfer model. 
The difference in measurements between these two methods is 

Figure 9. Bland-Altman and Pearson correlation analysis for one patient used to assess agreement between BP measurement methods. Plots (a) and (b) 
display Bland-Altman analysis for SBP and DBP, respectively. The red-dashed lines correspond to the average difference ± 1.96*standard deviation of 

differences. Plots (c) and (d) display the correlation between estimated and reference SBPs and DBPs, respectively. 
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plotted against the average measurement of the two devices. The 
difference between methods and mean of methods are calculated 
for each data sample using equations 7 and 8, respectively.  
 

𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                     (7) 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
2

                         (8) 
 
     It is common to compute the 95% limits of 
agreement between measurement methods. These limits are 
defined as the average difference between measurement methods 
(blue dashed line in Figure 9) ± 1.96*standard deviation of the 
differences between measurement methods (red-dashed lines in 
Figure 9). For two methods to be considered comparable, Bland-
Altman recommends that 95% of the samples should fall within 
these limits (red dashed lines). Among all 100 patients, 86% and 
93% achieve this agreement for SBP and DBP measurement, 
respectively.  
     We also carry out Pearson correlation analysis [39] separately 
for each of the 100 patients to compare our method’s estimated 
BP to the reference BP. The Pearson-R correlation coefficient is 
a measure of how linearly correlated two sets of data are. When 
using our non-transfer approach, the average and standard 
deviation of the Pearson-R coefficient is 0.83 ± 0.10 and 0.73 ± 
0.17 for SBP and DBP, respectively. When using our transfer 
learning approach, the average and standard deviation of the 
Pearson-R coefficient is 0.90 ± 0.06 and 0.82 ± 0.12 for SBP and 
DBP, respectively. This increase in correlation again shows the 
ability of transfer learning to improve estimation performance. 
     Since it is not possible to show individual plots for each 
patient, we provide plots for one patient whose Pearson 
correlation is similar to the average correlation across all patients. 
Figure 9 displays both the Bland-Altman and correlation plots 
for SBP and DBP for this patient. 95.1% of the SBP differences 
and 95.6% of the DBP differences fall within the Bland-Altman 
limits of agreement. The correlation between estimated and 
reference BPs is 0.9 and 0.85 for SBP and DBP, respectively. 
These results demonstrate a high level of agreement between our 
model’s estimated BP and the invasively measured BP from the 
arterial catheter.  

E. Investigating Source Patient Selection  

     In this section, we discuss findings regarding source patient 
selection for individual target patients. Table IV compares 
results when using different numbers of source patients, 
however, these results represent an average and do not capture 
performance variations at the individual patient level. The goal 
of this experiment is to determine whether there are optimal 
smaller sets of source patients for individual target patients.  
     In order to determine the effect of using different source 
patients for individual target patients, multiple models are pre-
trained. Table V displays the results for 3 different target 
patients, using 3 different pre-trained models for transfer 
learning. Model 1 represents the same initial model used in the 
previous experiments pre-trained with 50 source patients. 
Models 2 and 3 were pre-trained using different random sets of 

10 source patients. For this experiment, 50 samples from the 
target patient are used to finetune each model. 
     On average, pretraining with 50 source patients (shown in 
Table IV) is better than pretraining with 10 source patients. 
However, for individual target patients, there may be certain 
smaller sets of source patients that result in better transfer 
learning performance, as shown in Table V. This performance 
increase can be significant, especially seen for Patient 2. Model 
3 (pre-trained with 10 source patients) performs 13.9% and 
11.6% better for SBP and DBP estimation compared to Model 1 
(pre-trained with 50 source patients) for this target patient. These 
results indicate that transfer learning performance can be further 
improved by selecting a specific subset of source patients for 
individual target patients. In future work, we plan to investigate 
this idea of intelligent source patient selection for improving 
transfer learning performance. 

IV. CONCLUSION 
     In this paper, we present an effective hybrid network 
architecture for personalized BP estimation using the PPG signal. 
In order to reduce the number of personal PPG-BP samples 
required for training, we provide a novel transfer learning 
approach that personalizes specific layers of the network. Our 
method is tested over a demographically diverse set of patients, 
and our estimation performance achieves the BHS and AAMI 
standards. 
     In this study, the training and inference are implemented on a 
personal computer. For future work, we will investigate a light-
weight BP estimation model which can be implemented directly 
on a wearable device that collects PPG data while providing 
comparable performance to our current work. This will provide 
more real-time measurements and address concerns regarding data 
transmission and data privacy. BP measurement based on the PPG 
signal will enable a deeper understanding of how BP changes 
throughout the day, allowing the user to make adjustments in order 
to reach and maintain a healthy BP. 
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