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In this article, we explore the possibility of enabling cloud-based virtual space applications for better compu-
tational scalability and easy access from any end device, including future lightweight wireless head-mounted
displays. In particular, we investigate virtual space applications such as virtual classroom and virtual gallery,
in which the scenes and activities are rendered in the cloud, with multiple views captured and streamed to
each end device. A key challenge is the high bandwidth requirement to stream all the user views, leading
to high operational cost and potential large delay in a bandwidth-restricted wireless network. We propose a
novel hybrid-cast approach to save bandwidth in a multi-user streaming scenario. We identify and broadcast
the common pixels shared by multiple users, while unicasting the residual pixels for each user. We formu-
late the problem of minimizing the total bitrate needed to transmit the user views using hybrid-casting and
describe our approach. A common view extraction approach and a smart grouping algorithm are proposed
and developed to achieve our hybrid-cast approach. Simulation results show that the hybrid-cast approach
can significantly reduce total bitrate by up to 55% and avoid congestion-related latency, compared to tradi-
tional cloud-based approach of transmitting all the views as individual unicast streams, hence addressing the
bandwidth challenges of the cloud, with additional benefits in cost and delay.
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1 INTRODUCTION

In recent years, virtual reality (VR) has become increasingly popular and triggered great interest
worldwide. A series of new head-mounted displays (HMDs), with the advancement of display and
system on chip technology, are unlocking new applications in various fields, including gaming,
education, enterprise, entertainment, manufacturing, media, and transportation. However, due to
the high computational requirement of VR applications, current HMDs are either tethered to a
PC (like Oculus Rift [26] and HTC Vive [18]), or attach to a smartphone (like Samsung Gear VR
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Fig. 1. Two views in the same virtual space application (museum).

[32]), thus decreasing their mobility. To enable a truly portable and mobile VR experience, cloud-
based approach is of great interest, where views are rendered and encoded in the cloud, and then
transmitted to the end user as video streams over the wireless network. In this case, with mo-
bile cloud computing techniques [14, 42], the HMDs only need to decode the video stream, with
the possibility of a dramatically simplified and lightweight HMD design, not tethered to PCs or
smartphones.

In this article, we explore the possibility of enabling an emerging category of VR applications,
virtual spaces, for better computational scalability and easy access from any end device. Specifi-
cally, we consider two virtual space applications—i.e., virtual classroom and virtual gallery, where
a teacher/guide and students/visitors from different geographic locations can participate and com-
municate in the same classroom/gallery session, rendered as avatars in the same virtual space. A
key challenge in enabling such cloud-based virtual space applications is the high bandwidth re-
quirement to stream multiple views to each of the users, especially in the case of wireless VR
applications, where all the users may share a limited bandwidth. Hence, we seek to minimize the
total bit rate needed to transmit video streams of all users’ views without compromising video
quality. Note that though we develop and demonstrate our approach on two specific virtual space
applications, virtual classroom and gallery, our algorithms and approach can be applied to other
virtual space applications, such as virtual conference, stadium, campus, and so on.

As opposed to general cloud-based streaming applications, where each user’s view is unique,
in a virtual space application, users are usually close by with views overlapping. For example, in
Figure 1, view A and view B are captured from two virtual cameras (i.e., visitors’ views) in a virtual
museum application, with a large portion of shared pixels. By taking advantage of this observation,
in this article, we propose a novel hybrid-cast approach in which not every pixel of each user’s view
rendered on the cloud needs to be encoded and streamed from the cloud to each user separately.
Instead, we broadcast only one copy of common pixels (common view), and unicast the rest of the
pixels (residual pixels or residual views) to each individual user.

Another challenge lies in the selection of common view among multiple users. For better band-
width reduction, users should be grouped with a large portion of shared pixels so that common
view can be maximized and residual view can be minimized. However, an optimal algorithm for
grouping is computationally expensive and impractical for real-time use due to the frame-to-frame
view change of each user. In this article, we propose a fast and effective smart grouping algorithm
with novel metrics to evaluate the quality of grouping. The main contributions of our work can
be summarized as follows.

—We propose a novel and efficient hybrid-cast approach to reduce the total bandwidth to
stream all the user views in cloud-based virtual space applications by broadcasting a single
common view and unicasting only the residual views of individual users, without loss of
video quality. Thus, our approach is able to enhance the user experience (i.e., higher video
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quality and less latency) by alleviating network congestion. We show that we can reduce
up to 55% total bit rate needed for a virtual classroom and a virtual gallery application, with
latency improvement in a bandwidth-limited wireless network.

—We develop a common view extraction approach to calculate common view and residual
view between any two user views. To the best of our knowledge, we are the first to perform
common view extraction by exploring the pipeline of 3D virtual space rendering.

— We propose an automated and smart grouping algorithm to assign multiple users to different
groups to minimize the total bit rate needed to transmit all user views.

— We propose a new metric to enable fast and accurate calculation ofa common view between
two views. Compared to the optimal algorithm, we achieve similar solution quality with
hundreds of times speedup.

Note that we have published a conference paper [17] about this work, where we report on the
hybrid-cast approach and some preliminary results. In this article, we extend our approach by
proposing a smart real-time grouping algorithm, improving our proposed metrics and conducting
experiments on various virtual space applications.

The remainder of the article is organized as follows. In Section 2, we review related work. In
Section 3, we introduce virtual space applications and describe the architecture of our proposed
hybrid-cast approach. In Section 4, we first describe the methodology for common view extrac-
tion, problem statement, optimization metrics, and grouping algorithm. Section 5 presents our
experimental setup and we analyze the results. Section 6 concludes our work.

2 RELATED WORK

For cloud-based 3D virtual space applications, the main difference compared to a standard local
rendering pipeline [39] is the use and transmission of the entire screen as a video stream [24].
Therefore, reducing total bit rate of the video streams is the key to avoid congestion-related latency
and improve user experience, as stated in Section 1. In this section, we review the previous works
addressing the bandwidth challenge in (i) codec development, (ii) joint optimization for computer-
generated view streaming, and (iii) other techniques.

Upgrading video codec can be the most direct way to reduce bit rate consumption. Video coding
standards have evolved primarily through development by ITU-T and ISO/IEC standardization,
fromH.261 [11] and H.263 [12] by ITU-T, MPEG-1 [1], and MPEG-4 Visual [2] by ISO/IEC, to jointly
produced H.262/MPEG-2 [3], H.264/MPEG-4 Advanced Video Coding (AVC) [4], and H.265/MPEG-
H High Efficiency Video Coding (HEVC) [19] standards. In recent years, VP9 [31] and AV1 [35]
also appear as strong functional video coding formats due to their open and royalty-free features.
However, even if the bit rate can be reduced by using new video encoding standards, with the
increasing resolution of the devices, the bit rate requirements of the video streams are expected to
keep increasing, and particularly in the case of multi-stream VR applications.

In terms of streaming computer-generated views, joint optimization for both video codec and
graphics engines has proved to be more effective [23, 25, 34]. Wang et al. [34] propose a rendering
adaptation technique to dynamically adjust the richness and complexity of graphic rendering, de-
pending on the network and cloud computing constraints. Liu et al. [23] derive a content-aware
adaptive rendering algorithm to adjust rendering factors depending on current network condi-
tions, so as to obtain an “optimal tradeoff” between rendering and encoding quality. Lu et al. [25]
propose a joint asymmetric graphics rendering and video encoding approach for automatic selec-
tion of texture details or view distance settings for the left view and right view. However, all these
approaches compromise video quality to achieve smaller bit rate and are therefore inappropriate
to be used for HMDs due to proximity to the eyes.
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Fig. 2. (a) Two users’ positions in a virtual classroom. (b) Corresponding views of two users. (c) Two users’
positions in a virtual gallery. (d) Corresponding views of two users.

Alternatively, Cai et al. [9] propose a peer-to-peer cooperative video sharing solution in a multi-
player scenario to substantially reduce the total bit rate from cloud server to game clients. However,
their approach is only applicable to scenarios such as 2D third-person games, where game players
may share the same bird-view. Hence, their method cannot be applied to 3D virtual spaces.

In summary, codec-only optimization is limited by not exploring any additional benefits in
computer-generated view streaming. Joint optimization usually trades off quality for bandwidth,
which is inappropriate to be applied for HMDs since users are more sensible to the video quality in
VR virtual space applications. Other works explore peer-to-peer streaming, with the limitation of
fixed views of all users. Our work is distinguished from all previous works in that (i) we propose
a hybrid-casting approach to explore the benefits of computer-generated views in virtual space
VR applications to reduce the total bit rate needed while not sacrificing video quality, (ii) we de-
velop a common view extraction algorithm by exploring the 3D rendering pipeline, and (iii) we
propose an automated and smart grouping algorithm, with fast and accurate real-time evaluation
with empirically validated experimental results.

3 OVERVIEW

In this section, we first present virtual classroom and gallery applications. Next, we describe the
architecture of our proposed hybrid-cast approach.

3.1 Virtual Space Applications

We have developed a prototype implementation of the virtual classroom application using
Oculus [26] and Unity [33]. Compared to the Massive Open Online Course [15], where students
can only watch video without interaction with the teacher and each other, the virtual classroom
offers students a more immersive and interactive experience. Figure 2(a) illustrates the virtual
classroom, where each student has a unique view of the classroom. Figure 2(b) shows two views
from two students as an example. In our implementation, we place cameras to represent the stu-
dents’ views and more views can be easily obtained by placing more cameras. In such a virtual
classroom application, neighboring students may share a common view (the set of pixels corre-
sponding to the same coordinates in the object world between two views), as shown in Figure 2(b).
As is stated in Section 1, with our proposed approach, we can identify and broadcast the common
pixels shared by multiple users, while unicasting the residual pixels for each user. In this way, our
proposed approach can address the bandwidth challenges of the cloud, with benefits in cost and
delay.

Similarly, we have developed a virtual gallery application using Unity and conducted the related
experiments on it. Figure 2(c) illustrates the virtual gallery, where each visitor has a unique view of
the gallery. Figure 2(d) shows two views from two visitors as an example. As is shown in Figure 2(d),
two visitors also share a common view.
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Fig. 3. Hybrid-cast approach.

(a)
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Fig. 4. lllustration of common view extraction: (a) primary view A, (b) secondary view B, (c) common pixels
from view A, (d) common pixels from view B, (e) residual view in B, (f) generated view B from common view
and residual view.

3.2 Hybrid-Cast Approach

Figure 3 illustrates the architecture of the hybrid-cast approach. On the cloud, multiple views are
rendered in response to commands from multiple users, and then captured, encoded, and trans-
mitted as video streams. To enable our hybrid-cast approach, we cluster the users into different
groups based on their views. Within each group, only one user’s view is assigned to be the pri-
mary view, and all the other views are secondary views. For transmission, we broadcast the entire
primary view with full pixel information to all group members, but only unicast the residual pixels
(non-existing in the primary view) for each secondary view. Figure 4 gives an example. Figure 4(a)
shows a primary view A and Figure 4(b) presents a secondary view B. Secondary view B consists of
two parts, common view and residual view. The common view is part of the view that shares the
common pixels between A and B. Figure 4(d) shows the common view of B shared with A and Fig-
ure 4(c) presents the corresponding shared view from view A’s perspective. For secondary view B,
residual view is defined as the pixels non-existing in primary view A. Figure 4(e) shows the residual
view, which can be used to recover secondary view B (Figure 4(f)) by combining with common view
(Figure 4(d)). We explain the common view extraction and our grouping algorithm in Sections 4.1,
4.3, and 4.4. For instance, in a virtual classroom like Figure 2(a), user A is a student in a back row
within the class, sharing a subset of the view from the students in front of him. With our proposed
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Table 1. Three Types of Bandwidth Savings

Bandwidth Savings Feasibility
Cloud Always
For users associated with base stations
Backhaul
connected by the same gateway
For users associated with the same base
Cellular

station

Table 2. Several Cases for Applications

Bandwidth
Cases Description Savings
1 Students in campus join a virtual gallery application | Cloud, backhaul,
(associated with the same base station) cellular
Users in the same urban region attend a virtual
. . . Cloud and
2 classroom (associated with base stations connected
backhaul
by the same gateway)
3 Users in distant plqces parttzapate in a virtual space Only cloud
(e.g., belonging to different networks)

grouping algorithm, user A will be clustered into a group, where another student within this group
is assigned as the user with primary view (since only one user is assigned to have primary view
in each group). The primary view may include the blackboard, teacher, walls, and so on, while the
residual view of user A may consist of the back of other students in front of him or her, and so on.
After doing synthesis of primary view and residual view on the client side, user A can obtain his
own secondary view.

The bandwidth savings achieved by our hybrid-cast approach may depend on the location
of the users. Figure 3 shows the dataflow from the cloud server (cloud) through core network
and gateways (backhaul) to base stations and end users (cellular), consuming different types
of bandwidth—cloud, backhaul, and cellular bandwidth—at different stages of the network. The
bandwidth savings achieved by our approach (as reported in Section 5.3) are fully translated to
the cloud bandwidth savings achieved, irrespective of the location of users, since transmitting a
single primary view will suffice from the cloud servers. However, the backhaul and cellular band-
width savings will depend on the location of users. For users associated with the same base station,
clearly the bandwidth savings translate to both the cellular and backhaul, besides cloud bandwidth
savings, as a single primary view can be broadcast to all base stations through the backhaul, and
broadcast to all primary users through the access network (cellular). For users associated with
different base stations that share the same gateway, although cellular bandwidth cannot be saved
through cellular broadcast, backhaul bandwidth savings can be achieved since a single primary
view can be transmitted (multi-cast) through the backhaul to the base stations for these users.
However, for users associated with different base stations that do not share same gateway, while
the savings do not translate to the backhaul and access bandwidth, cloud bandwidth savings can
still be achieved as explained earlier. We summarize the three types of bandwidth savings achieved
by our approach under different user locations in Table 1.

We provide an estimation of bandwidth savings for several cases in Table 2. For case 1, when
students in campus join a virtual gallery application, we can obtain cloud, backhaul, and cellular
bandwidth savings. In case 2, for users in the same urban region attending a virtual classroom, cloud
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and backhaul bandwidth savings can be gained with our proposed approach. Since the gateway
connected to core network can support from 100 base stations for medium size urban network (5x5
km coverage) to over 1,000 base stations (15x15 km coverage) [13, 20], the virtual application users
within this coverage area will share the same gateway, and hence will result in backhaulbandwidth
savings, though not cellular bandwidth savings as the latter will depend on the distribution of the
users across the base stations. For case 3, where users may belong to different networks, only cloud
bandwidth savings can be achieved.

Note that to maximize gains in bandwidth savings, our proposed method requires multicast
protocols to be employed on the entire end-to-end paths (from the cloud center, through the core
network, and all the way to users). Since multicast protocols are not widely employed in today’s
networks, our approach is developed based on the assumption that multicast protocols will be well
deployed and utilized in the future networks. Next, we briefly discuss the existing data transmis-
sion mechanisms that can be used for access links (cellular) and backhaul links. As for wireless
access links, broadcast and unicast can be realized by using existing LTE Evolved Multimedia
Broadcast Multicast Services [22] standards, and broadcast/multicast point to multipoint [30] be-
ing developed for future 5G access networks. In terms of transmissions in cloud and backhaul
links, advanced IP multicast [36] protocols can be used, including Pragmatic General Multicast
[37], Multicast File Transfer Protocol [21], Real-Time Transport Protocol [38], and Resource Reser-
vation Protocol [40]. Data routing, forwarding, and associated transmission protocols should be
further studied in future work.

Our approach achieves best performance in reducing bandwidth when users are associated with
the same base station, and only cloud bandwidth savings (no backhaul and cellular) can be guar-
anteed when users are distributed in distant places (since users do not share the same cellular
gateway). Moreover, the limitations of our approach mainly come from (a) the difficulty of large-
scale deployment of multicast protocols in current networks and (b) our approach only supports
an indoor 3D environment (where views aimed toward the same wall) and does not support a fully
tridimensional environment such as an outdoor environment. We propose the following to address
these limitations. For limitation (a), apart from expecting multicast protocols widely deployed in
the future, we can first apply our proposed approach in scenarios where users are associated with
same base station or base stations connected by the same gateway, and take the conventional
method (i.e., unicasting the view directly) for transmitting views for users associated with other
distant base stations. For example, the community in a campus or company is such a good sce-
nario. In terms of limitation (b), in our future work, we will further develop corresponding metrics
to apply our approach in fully tridimensional environments such as outdoor environments.

4 OUR APPROACH

In this section, we first describe the methodology for common view extraction and give the problem
statement. Next, we describe our optimization metrics and provide empirical validation. We then
present our grouping algorithm.

4.1 Common View Extraction

Figure 5 illustrates the common view extraction flow between two users. In the flow, we assume
that user A is assigned the primary view and user B is assigned the secondary view. To extract the
common view, we perform a series of transformations from window space of user A to the object
space, and further to the window space of user B. A common view is the set of pixels within the
window space of A that falls into the window space of B after the above transformation. To better
illustrate our approach, we define two series of transformations: (i) forward transformation and
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Backward Transformation for User A
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Fig. 5. Architecture of common view extraction.

(ii) backward transformation. For a pixel with coordinate (x, y, z)opjec; in the object space, the for-
ward transformation calculates the corresponding coordinate (x, ¥, z)window in the window space
and vice versa for the backward transformation.

Specifically, the OpenGL [28] pipeline performs the forward transformation from object space to
window space, through four steps [5, 6]. The first step is to transform from the object space to the
eye space using the ModelView matrix Myjodelview, then we transform from the eye space to the
clip space using projection matrix Mp,gjection; Next we transform from the clip space to the Nor-
malized Device Coordinate (NDC) [16] space using perspective dividing Mp;;q.; last, we trans-
form from the NDC space to the window space by performing viewport transformation My evpors-
(The details of OpenGL pipeline are omitted due to space constraints.) Overall, for a pixel with co-
ordinate (x,y, z) in the object space, the procedure of transformation to the window space can be
described as the following:

(%, Y, 2)window = MViewport *Mpivide * Mprojection

: MA’IOdB[Vi@W . (x: y, z)object-

To check the common pixels between two window spaces, as described in Figure 5, we propose
to use the inverse transformation matrices for backward transformation (i.e., calculating corre-
sponding coordinates from the window space to the object space), as described in the following
equation:

_ ag-1 a1 a1
(x’y’z)"bje"t_MModelView MProjection MDivide

-1
’ MViewport ’ (x’ Y, Z)Window-

Therefore, by utilizing both the backward and the forward transformationsin serial for only those
pixels in window space A, we can tell if the pixel falls in window space B. Thus, we can extract
the common view. Furthermore, we can also recover the secondary view by using the primary view
and residual view based on the same theory. This procedure is named as synthesis in the Figure 3.

4.2 Problem Statement

We introduce the problem statement in this subsection. The basic notation used in our formulation
is provided in Table 3.

Given: All views in the virtual classroom; dimensions of the virtual classroom, including the
width and length.
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Table 3. Notations Used in Our Formulation

Notation Meaning
Vv view
Veom common view
Vies residual view
n number of users
P[] number of pixels
R[] pixel ratio
Prrame number of pixels in one frame
Pioral total number of pixels transmitted
Rioral total pixel ratio transmitted
p primary view
q secondary view
Sp set of primary views
Sq set of secondary views
B binary indicator matrix
bp.q element of binary indicator matrix B
D distance matrix
D(p,q) element of distance matrix D

Find: An optimal strategy to minimize the total number of pixels transmitted P;,;,; for all views.

min Pyorar & min{ > P[Vees(9)]+ Y. PIV(p)]

qE€Sq PESy

emin > R[Vres(@]+ ) RV()]

qE€Sq PES)

o min{ > R[Vres(@)] + 15|

q€Sq
emind > " byq-Dip,q) +IS,l{ 1)
PESp qESy
where
b = 1, if p, q are in the same group, @)
P47 10, otherwise
D(p,q) = R[Vres(@)]= 1 = R[Veom(q)]- ®)

Equation (1) demonstrates our objective to minimize the sum of total number of pixels trans-
mitted Pyozq) for all views. S, and S, represent the set of primary views and secondary views, re-
spectively. P[V,.s(q)] and P[V.om(q)] represent the number of residual and common pixels within
secondary view q, respectively. Note that for each group, there is one user with primary view and
the rest of the users with secondary views. For each secondary view, only one primary view is cor-
responding to calculate P[Veom(q)] and P[V,es(q)]. P[V(p)] denotes the number of pixels within
primary view p.
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Table 4. Notations Used to Build Metrics

Notation Meaning
xVL length of front wall
yVL length of side wall
VLength | metric to represent the range of a view in x-axis

Xi, Yi location for user i in x-axis and y-axis

Ax distance between a user and left side wall in x-axis

Ay distance between a user and front wall in y-axis

cVL metric to evaluate the common ratio between two views
cnVL normalized form of ¢VL

xfactor | length of front and side wall within both views
yfactor | squared ratio of distance to the front wall for both views
RmwW room width

k,b parameters in linear regression

Moreover, we define the residual pixel ratio of a secondary view q as

PV,
RVt = Lot
frame
and the common pixel ratio of a secondary view q as
P[Veom(q)]
R[Veom(q)] = P—m’
frame

where Pf,qme is the number of pixels per frame. Since the number of pixels in primary view p is
equal to Prrame, the pixel ratio R[V (p)] = 1. |S,| indicates the number of primary views.

In Equations (2) and (3), the elements of binary indicator matrix B and distance matrix D are
defined as b;, 4 and D(p, q), respectively. Specifically, the value of D(p, q) equals the residual pixel
ratio of a secondary view ¢ when the primary view p is selected. The larger the D(p, q) is, the more
the difference between view p and view q is.

4.3 Metrics and Evaluation

In our approach, to assign multiple users to different groups and minimize the sum of bit rate across
multiple users, we want to develop a strategy to group the views that have a lot of common parts
together. To make the grouping technique fast, we need to avoid the time-consuming process of
conducting common view extraction between all pairs of different views. Instead, we develop and
use an easy to calculate metric to represent how much is common between two views; we term
this metric as common normalized VLength (cnVL), which we define next. Though we consider the
virtual classroom application to develop the metric below; the same definition will be applicable
to other virtual spaces like virtual gallery.

The basic notation used in our proposed metrics is provided in Table 4. To be specific, we define
VLength as the sum of xVL and yVL, as shown in Equation (4). In this definition, xVL and yVL
denote the length of the front wall and side wall within the current view, respectively. Figure 6(a)
illustrates from the top of the classroom an example of xVL and yVL with the view of seat #9.
Figure 6(b) illustrates from the side of the classroom another example of xVL and yVL of one
student view, which is shown as the first view on the right. Figure 6(b) also presents four actual
student views from four different positions in the second row of the classroom. We can also see
the position of the far plane, which exceeds the wall of virtual classroom. VLength also indicates
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(b) Looking from the side.

(a) Looking from the top.

Fig. 6. The model of the virtual classroom and camera view when looking from the top and side. Lengths of
xVL and yVL are shown. (a) presents the boundary of the classroom, seat positions as well as a demonstration
of users’ views. (b) exhibits views (on the right) as illustrations for student views of four different positions
on the second row.

Table 5. Four Different Cases

Case a| b | c

Left wall visible | v
Front wall visible | v | v | vV
Right wall visible v

(a) (b) .
view 2]

XVL XVL

A =y £ A N
VVle{ IAY

Ax

ANRNENEN

(c)

(d)
L—[ e
z shiRi=HF

xVL
——

VL
F‘MMY ! { l o

Ax

Ay Ay

Fig. 7. (a)-(d) show four types of relative positions between classroom boundary and view boundary. And
RmW denotes the width of the classroom in x-axis.

the range of view in x-axis and is defined in Equation (4):
VLength = xVL + yVL. 4)

To calculate VLength, we summarize four different types of relative positions between classroom
boundary and view boundary, as shown in Table 5. Figure 7 also shows these four types of relative
positions as in cases (a)—-(d). Especially, we note that for case (d), VLength is obtained separately
according to yVL from the left wall (yVL,,,) and right wall (yVL ), respectively, as shown in
Equation (5):

right

VLength = xVL +yVLr, + YVL,;gp,- (5)

We define the Common VLength (cVL) as a metric to evaluate the common ratio between two
views p and gq. Equation (6) describes ¢V L, with xfactor and yfactor defined in Equations (7) and (8),
respectively. xfactor is defined as the length of the front and side walls within both views. Specif-
ically, we assign two users with subscripts 1 and 2 to distinguish them. Subscript 1 represents the
user on the left while subscript 2 denotes the user on the right. Condition 1 indicates that two
views are of case (a) and (c), respectively; condition 2 indicates that both views are of case (b);
and condition 3 indicates all other case combinations. yfactor is defined as the squared ratio of the
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Fig. 8. Four cases of two user views, where the yellow line denotes x factor.
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Fig. 9. Validation of model parameters, showing the relationship between the common pixel ratio and cVL
as well as cnVL.

distance to the front wall for both views.

cVL(p,q) = xfactor - yfactor, ©)

where
xVL; +xVLy, — RmW if condition 1;

xVL; — |Ax; — Ax,| if condition 2;

x factor = min(xVL;,xVLy) + ’ (7)
min((yVLleft)h (yVLleft)Z) +

min((yVLright)l’ (yVLright)Z)
otherwise (condition 3);

(Ay1/Ays)?, if Ay; < Ay,
(Ayz/Ayl)z, lf Ayl > Ayz

Figure 8 shows four cases of two user views (for users A and B), where the yellow line denotes
xfactor. The proposed metric c¢VL is used to represent common pixel ratio between two views, and
our approach can handle arbitrary viewing direction. For instance, when two users have small
or even no common view, the corresponding xfactor and calculated c¢VL are small or even zero,
representing that the common pixel ratio is small. As described in the next section, when a user
A’s viewing direction may be very different than user B’s, user A may be clustered into a different
group than user B due to their small common pixel ratio.

To evaluate our proposed metric, we compare cVL (Equation (6)) to the common pixel ratio (de-
fined in Section 4.2) for every pair of views in a virtual classroom with a seat pattern of 2x5 (10
views, 100 pairs of views). Each view has a resolution as 1080p. Figure 9(a) illustrates the corre-
lation between cVL and the common pixel ratio values for the 100 pairs of views, with an overall

yfactor = { (8)
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Fig. 10. The cnVL(p,q) between every two views in a 5x5 seat pattern, where the p and g represent the primary
view index and secondary view index, respectively.

correlation of 0.8828. To increase the correlation with common pixel ratio, we define common
normalized VLength (cnVL) as follows:

enVL(p,q) = Vip.9) )

cVL(p,p)’
Figure 9(b) illustrates a higher correlation, 0.9207, between c¢nVL (Equation (9)) and the common
pixel ratio. We also conduct a linear regression and obtain the results as follows:

R[Veom(q)] = k - cnVL(p, q) + b, (10)

where k = 1.012 and b = —0.1291.

For instance, Figure 10 is a distribution of cnVL in a virtual classroom with a 5x5 seat pattern
(shown in Figure 6(a)); the 25 students (views) are indexed from 1 to 25, p refers to primary view
and q is the secondary view. In Figure 10, we can see that the distribution of cnV L(p, q) reflects the
distribution of common ratio between two views p and q. Specifically, if two views are captured in
closer positions, the cnV'L tends to be larger; otherwise, cnV L will decrease. Within these 25 views,
cnVL attains 1 when views p and q are selected as the same view, while the minimum is attained
as 0.1 when primary view and secondary view are assigned as view #25 and view #1, respectively.

The calculation of cnVL values is much simpler and faster compared to obtaining the actual
Common Pixel Ratio between every two views using graphic rendering. Therefore, due to the high
correlation between cnVL and common pixel ratio, we can approximate the common pixel ratio
with the metric cnV L, which greatly saves runtime. Subsequently, we update the calculation of
D(p, q) in our problem formulation (Equation (1)) as follows:

min P; o © min Z Z bpq - DP.q) + 1S5l ¢ s (11)
PESH q€Sy

where

D(p.q) = R[Vyes(q)]
=1- R[Vcom(q)]
~1—(k-cnVL(p,q) + D). (12)
In this way, we can use the newly defined metric cnVL to estimate the common pixel ratio

R[V¢om] between any pair of views. We can also denote the residual pixel ratio as D(p, q) between
the primary viewp and the secondary view g, and calculate D based on metric cnV L as Equation (12).
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4.4 Grouping Strategy

In a virtual space with a large number of users, if we have all the users in the same group (i.e.,
one primary view and all others have secondary views), then the number of residual pixels needed
may become very large, with some residual views almost equaling the size of the primary view.
On the other hand, if we divide users into too many groups (e.g., each one as a unique group), then
the size of residual views may greatly decrease (e.g., even to 0) but the number of common pixels
may become very large (e.g., even equal to the total pixel number for all views), thus leading to an
overall high bit rate needed. Hence the challenge is to identify the most appropriate partitioning
(groups) of the users of the virtual space so the overall bit rate needed to transmit their views is
minimized (Equation (11)). For example, for better bit rate reduction, users should be grouped with
a large portion of shared pixels so that common view can be maximized and residual views can be
minimized.

Since finding the optimal groups to minimize the overall bit rate (Equation (11)) is NP-Hard,
we first propose a heuristic algorithm VS — GRP (presented in Algorithm 1), which we show in
Section 5.4 to have linear complexity in terms of number of users. So that we can evaluate the
performance of VS — GRP, we subsequently present an optimal but exponential time complexity
algorithm VS — OPT (shown in Algorithm 2), and compare their performances in Section 5.

We next describe the steps of Algorithm VS — GRP. In Lines 2-11, we make an implement to
take the minimum value of evl” (i.e., the value of P,,;,; in Equation (11)), traversing all potential
optimized grouping strategies for K groups for I,, iterations. In Lines 4-5, we use the procedures
Kmeans and Evaluate to obtain optimized groups and calculate their value of evl*. The Kmeans
procedure consists of three parts: Initialize, Optimization and Update.

We use the Initialize(k, i,,) procedure to initialize k cluster centers for k groups (i.e., each group
has a cluster center). In iteration number i,, = 1, we will give a priority index to each user. The
numbering method is giving the user with smaller y a smaller priority index, and if two users have
equal y, we give the user with smaller x a smaller priority index. In this way, each user will be
numbered with a priority index, from 1 to n. In our algorithm, we initialize k cluster centers as
I_%J ) |_27”J, ..., n. After that, we will carry out the Optimization and Update procedures. Otherwise,
if iteration number i,, # 1, we initialize k cluster centers randomly by picking k different users
from n users.

Then, in Lines 3-11 of Kmeans procedure, we implement the optimization by updating the users
with primary and secondary views continuously until the set of primary views S, and the set of
secondary views S, do not change anymore. The number of the iterations in Lines 311 are denoted
as I,,, which will be discussed further in Section 5.4. In Optimization procedure (Lines 5-7 of
Kmeans procedure), we will find out which view p in the set of primary views S, has the minimum
D(p, q) and then select it as the primary view within this group. In Update procedure, we will
update the S;,, S; by assigning the nearest one to the average location of all group members as the
user with primary view.

In Lines 2-6 of Evaluate procedure, we calculate the value of evl* (i.e., the value of Py in
Equation (11)) by adding up each item in Equation (11). With all these procedures, we can finally
obtain the optimized grouping strategy with our algorithm.

As stated earlier, since algorithm V'S — GRP is heuristic, so that we can evaluate its performance,
we also present an optimal algorithm VS — OPT, which considers forming all possible groups by
using all possible assignments of primary views and secondary views in an exhaustive manner.
Then by comparing the value of P, in Equation (11) for every possible assignment and finding
out the groups for which is minimum, we can obtain the optimal groups. Specifically, we present
this algorithm with MATLAB implementation. The function combntns(set, ny) returns a matrix
whose rows are the various combinations that can be taken of the elements of the vector set
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ALGORITHM 1: VS-GRP Algorithm

Inputs: Number of users n, locations (x;, y;) for each user i and distance matrix D.

Output: Binary indicator matrix B, such that bit rate needed for all user views is minimized (Equa-

11:
12:

==

R A A R o

R A A~ > v

A A o

tion (11)).
evl « +o0
fork=1:Kdo
fori, =1:1, do
B* <« Kmeans(k, i)
evl” « Evaluate(B*)
if evl > evl” then
B « B*
evl « evl*
end if
end for
end for
return B

Procedure Kmeans(k, i,):
: Sy, Sq < Initialize(k, i,,)
: while S; # S5, do

B* « zeros(n,n)

forqge S, do
p < argmin, {D(p,q).p € Sy}
b;,q —1

end for

S;; — S,

Sp,Sq < Update(B*)

: end while
: return B*

Procedure Evaluate(B*):

evl” « 0

: forp €S, do

forge S, do
evl” — evl” + (b, o - D(p,q) + k)
end for

: end for
: return evl*

of length ny while the function setdif f (A, B) returns the data in A that is not in B, with no
repetitions. In this way, we can do a traversal of all possible combinations of users assigned with
primary view or secondary view. For every possible combination, we will calculate its value of
evl”. Finally, we will obtain the user’s assignment with the minimum evl”, which is the optimal
strategy for grouping.

Next, we briefly analyze the time complexity of the optimal exhaustive algorithm VS — OPT as
well as our proposed grouping algorithm V'S — GRP. Let n be the number of users in the virtual
space, and k be the desired number of groups. For the optimal exhaustive algorithm VS — OPT,
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ALGORITHM 2: VS-OPT Algorithm

Inputs: Number of users n, locations (x;, y;) for each user i, and distance matrix D.
Output: Binary indicator matrix B, such that bit rate needed for all user views is minimized (Equa-
tion (11)).
1: evl < 400
2. v« [1:n]
3 fork=1:ndo
4 S, < combntns(v, k)

5 Neomb < size(Ss,, 1)

6 fori=1:n.mp do

7: B* « zeros(n, n)

8 Sp < S5, (i,2)

9: Sq « setdif f(v,Sp)
10: forj=1:(n-k)do
11: q < Sq(j)

12: p < argmin, {D(p,q),p € Sp}
13: b;’q —1

14: end for

15: evl” « Evaluate(B")

16: if evl > evl* then

17: B « B*

18: evl « evl*

19: end if

20:  end for

21: end for

22: return B

there are CX possibilities of choosing k primary views (for k groups). After deciding k users with
primary views, we have (n — k) users to be assigned with secondary views. For each of the unas-
signed users, there are k possible choices (each view can be assigned to either of the k groups),
leading to a multiplicative factor of k¥ for each CX. Therefore, the time complexity of the optimal
exhaustive algorithm VS — OPT is O(Ckk"F).

In contrast, our proposed grouping algorithm has a computation complexity of O(nKI,), where
n is the number of users, I, is the number of iterations in Kmeans procedure, and K is the maximum
number of groups we traverse. Next, we empirically estimate upper bound for K and I, to validate
our complexity analysis in Section 5.4.

5 EXPERIMENTAL RESULTS

In this section, we describe our experimental setup and results. We use an Intel Core i7 Quad-
Core processor with 32GB RAM and implement our approach in MATLAB. We demonstrate the
performance of our grouping algorithm (VS — GRP) with our proposed evaluation metrics side by
side to an optimal, exhaustive grouping algorithm (VS — OPT). We demonstrate experiments by
using (i) the virtual classroom application with a regular student’s seat (view) pattern and (ii) the
virtual gallery application with the location of visitors (views) randomly distributed. To further
demonstrate the robustness, we also show experiments for a virtual classroom, with vacant seats
(views). Then we present a complexity analysis, and a congestion-related latency study in this
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Fig. 11. Total number of transmitted pixels divided by number of pixels in one frame, versus number of
groups k for four different seats pattern virtual classrooms. Sub-graphs present seat patterns of (a) 7x5,
(b) 5x7, (c) 7x6, and (d) 7x7, respectively.

k51
oX |
oo °0 |
k=4 {1,,=20) oo| |30330s| |300000|||eeeeeee 00000660
7 00| loooooe <><><><><><>i SPCHH SPFHOG
< 900000| (000009 R B Y o PERYRER
s k=7 k=5 k=6 k=8 k=8
= 560000 (1,=1) 1,220 1,,=50,0ptimal 1,=1,20 1,,250,0ptimal
(1,520,50,0ptimal) | | 0000 0o 000000K v ((); 6) R t )(d)7x7(w .
C)/Xt
k=6 (1,,=50) k=5 (Optimal
(a)7x5 (1,250) (b)5X7 5 (Optimal)

Fig. 12. Grouping results of I, = 1, 20, 50, and Optimal cases for four different seat pattern virtual classrooms.
Sub-graphs (a)—(d) present seat patterns of 7x5, 5x7, 7x6, and 7x7, respectively.

section. Note that we select virtual classroom and virtual gallery applications to validate the effec-
tiveness of our approach, since they have different characteristics: the users in the classroom have
a regular distribution pattern while the users in the gallery are more randomly distributed in the
virtual space. For the virtual classroom, we explore two scenarios, without and with vacant seats,
since vacant seats can affect the user distribution pattern and hence the grouping results.

5.1 Virtual Classroom

5.1.1 Without Vacant Seats. To evaluate the effectiveness of our approach, we perform our
experiments using the virtual classroom application with different seating patterns and all seats
occupied.

We first consider a virtual classroom with a seating configuration having the same horizontal
and vertical seat spacings (Spacingy = Spacingy = 2). Figure 11 shows the total number of pixels
(normalized to frame size) to be transmitted with different number of groups. R;o;4; is the ratio of
total number of pixels to be transmitted over total number of pixels in one frame. For example, in
a 20-user scenario, R;otq; = 14.99 means that we only need 14.99 X Pf,gme (e.g., 1920x1080 pixels)
instead of 20 X Pgme. We use I, = 1, 20, 50 for our proposed algorithm V'S — GRP, and compare
to the optimal algorithm VS — OPT (Optimal), using four different seat patterns—7x5, 5x7, 7x6,
and 7x7. For a given number of groups k, we can see that there is a tradeoff between solution
quality (total number of pixels to be transmitted) and I,,. Larger I,, benefits the grouping result
(closer to optimal R;,;4; as well as Pyy;41) but also consumes more runtime, as shown in Table 6.

From Figure 11, we can also find a preference for k as well. Too few groups may result in many
distinct secondary views, thus there is not much common view. Too many groups may result in
too many primary views, leaving insufficient secondary views. Figure 12 shows examples of some
grouping results for the four seat patterns. Each diamond denotes a seat and each color represents
a unique group. We can see that as I,, increases, our grouping algorithm performs closer to the
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Table 6. Experimental Results for Four Different Seat
Pattern Virtual Classrooms

Space Alg. Runtime | k | Ryorq1 | Pixel Savings
IL,=1 0.0035s 7 | 14.99 57.2%
755 L, =20 0.0707s 5 14.55 58.4%
L, =50 0.1660s 5| 14.55 58.4%
Optimal >1h 5| 14.55 58.4%
I,=1 0.0036s 5| 15.65 55.3%
557 L, =20 0.0683s 4 | 15.63 55.3%
L, =50 0.1715s 6 15.56 55.5%
Optimal >1h 51| 15.49 55.7%
L,=1 0.0044s 7 | 17.68 57.9%
756 L, =20 0.0774s 51| 17.55 58.2%
L, =50 0.1917s 6 | 17.51 58.3%
Optimal >1h 6 17.51 58.3%
L,=1 0.0046s 8 | 23.30 58.4%
757 L, =20 0.0950s 8 | 23.30 58.4%
L, =50 0.2349s 8 | 23.20 58.6%
Optimal >1h 8 | 23.20 58.6%

optimal solution. For instance, Figure 12(a) shows that by using I,, = 1, we obtain a grouping
strategy (dividing users into 7 groups) while by employing I,, = 20, 50 or optimal algorithm V'S —
OPT, we receive the same grouping result (five groups). Similarly, we present the grouping results
for the other three seating patterns in Figure 11(b)—(d), respectively.

Table 6 summarizes the quality of results in terms of runtime, R;,;4;, and pixel savings for the
four seat patterns. Our proposed approach consumes up to 0.24s for grouping, compared to 1 hour
of the optimal exhaustive grouping algorithm, while giving at most 0.2% degradation of bit rate
savings when I,, = 50. For a more real-time-critical scenario, we only need 5ms for grouping when
I,, = 1, with a maximum degradation of 1.2% in pixel savings. Overall, our proposed approach can
achieve more than half of the pixel savings for all four seat patterns within milliseconds. To be
specific, as seen from Table 6, our proposed algorithm VS — GRP (such as I,, = 1) with hybrid-cast
approach reduces the pixels needed by 57.2%, 55.3%, 57.9%, and 58.4% compared to the conventional
approach of transmitting all the 7x5, 5x7, 7x6, and 7x7 views as individual unicast streams. Also,
our proposed algorithm VS — GRP is able to reduce the pixels needed only by a marginal 1.2%,
0.4%, 0.4%, and 0.2% less than the optimal algorithm VS — OPT, while ensuring that it can be run
in real time (runtime of 0.0040 seconds on average when I,, = 1) compared to more than an hour
of runtime for the optimal algorithm. The results when I,, = 20, 50 are really similar to optimal
results but the runtime will be a little more than the runtime when I,, = 1.

Since the above grouping results present a tendency for horizontal grouping (Figure 13), we
then perform experiments with a virtual classroom with different seating configuratiosn, where
the spacing between vertical seats is less than the spacing between horizontal seats (Spacingy = 1,
Spacingy = 2). Figure 13(a) and (b) show grouping results for two seat patterns (6x7 and 7x7), re-
spectively. Each diamond denotes a seat and each color represents a unique group. We can observe
that for the new seat configuration, our proposed grouping algorithm produces more groups in
vertical direction, and, in general, groups consisting of both horizontal and vertical neighbors.

Besides showing the real-time performance of our proposed grouping algorithm, we analyze
the end-to-end latency consumed for our cloud-based virtual space approach in Appendix B. Our
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Fig. 13. Grouping results of I,, = 1, 20, 50 and Optimal cases for two different seat pattern virtual classrooms.
The sub-graphs (a), (b) present seat patterns of 7x6 and 7x7, respectively.
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Fig. 15. The left sub-graph shows the average number of groups versus number of occupied seats while the
right sub-graph demonstrates the pixel savings versus the number of occupied sets. Specifically, in the latter,
the green line represents the average pixel savings.

analysis shows server-side latency of 9.5-19.5ms and client-side latency of about 5.5ms, per ren-
dered frame.

5.1.2  With Vacant Seats. To demonstrate the robustness of bit rate savings, we consider a more
irregular seat pattern in the virtual classroom. In our experiment, we use a 7x5 seat pattern, and
each seat has a vacant probability of 20%. (This scenario can match to a virtual class where each
student may choose to drop the class with a fixed probability.) We randomly generate 1,000 differ-
ent vacancy patterns. Figure 14 shows the probability density function and cumulative distribution
function for the 1,000 vacancy patterns. For each vacancy pattern, we apply our proposed group-
ing algorithm VS — GRP. Figure 15 shows the results in terms of the number of groups and pixel
savings obtained. The empirical results demonstrate that our algorithm performs well with va-
cant seats. We have achieved similar pixel savings ratio compared to a virtual classroom without
vacancy.
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Fig. 16. A virtual gallery scene where the visitors are randomly distributed is demonstrated in (a), grouping
results for 16 users are presented in (b), (c) while results for 25 users are shown in (d).

Table 7. Experimental Results for Multiple
Users in Gallery Scene

Scene Alg. k | Pixel Savings | Runtime
I, =1 4 55.0% 0.0043s

Scene; | I, =20 | 3 56.9% 0.0454s
Optimal | 3 56.9% >1h
I, =1 4 56.8% 0.0056s

Sceney | I, =20 | 4 56.8% 0.0533s
Optimal | 4 56.8% >1h

Interestingly, as shown in Figure 15, the average group number grows approximately linearly
with the increase in the number of occupied seats. Also, we can achieve more pixel savings with
more occupied seats, while the exact location of those vacancies does not impact much the pixel
savings. Overall, we still achieve more than half of pixel savings for all configurations, indicating
the robustness of our algorithm. Specifically, in the right sub-figure of Figure 15, the x-axis is the
number of occupied seats and y-axis is the pixel savings. Every blue point represents the number
of occupied seats and the pixel savings achieved by using our proposed approach. The green line
and the triangle point within it represent the average pixel savings corresponding to the number of
occupied seats. For example, the point (20, 0.53) indicates we can achieve approximately 53% pixel
savings to transmit all 20 views (for 20 occupied seats) with our proposed approach. It is demon-
strated that the pixel savings will increase linearly as the number of occupied seats increases. We
can observe that the pixel savings will not be affected by the position of vacant seats, but rather
the number of vacant (as well as occupied) seats.

5.2 Virtual Gallery

Next, we show results of applying our approach to the virtual gallery application. In the virtual
gallery shown in Figure 16(a), visitors (views) are randomly distributed. We conduct two sets of
experiments, with 16 and 25 users, respectively. Two different grouping results for 16 users are
presented in Figure 16(b) and (c), while one grouping result for 25 users is shown in Figure 16(d).
Table 7 summarizes the experimental results in terms of the parameters, pixel savings obtained,
and runtime, compared to the optimal algorithm VS — OPT. We can see that for 16 users (Sceney),
our proposed algorithm V'S — GRP (I,, = 1) can obtain pixel savings of 55.0%, with only 1.9% degra-
dation compared to the optimal result, while consumes only 4.3ms. The corresponding assignment
for I, = 1 and k = 4 is shown in Figure 16(b). The grouping assignments for I,, = 20 and Optimal
are the same, and are demonstrated in Figure 16(c). For 25 users (Scene,), the grouping assignments

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 3s, Article 58. Publication date: June 2018.



Novel Hybrid-Cast Approach to Reduce Bandwidth and Latency 58:21

Table 8. High Correlation Between Savings in Bit
Rates and Savings in Pixel Ratio

Conv. Prop.
Space Items Approach | Approach | Savings
Ve Total Bit Rate | 43.7Mbps | 26.7Mbps 39.0%
Avg. Pixel Ratio 2.00 1.18 41.0%
VG Total Bit Rate | 27.6Mbps | 23.3Mbps 15.7%
Avg. Pixel Ratio 2.00 1.63 18.5%

for I,, = 1,20 and Optimal are the same, shown in Figure 16(d). The above results again demon-
strate the effectiveness of our proposed grouping algorithm in a virtual space application with
randomly distributed views. Overall, the pixel savings are similar compared to a virtual classroom
application, while suitable for real-time-critical applications.

5.3 High Correlation Between Pixel Ratio and Bit Rate Savings

In this experiment, we validate the correlation between pixel ratio and bit rate savings. In our
hybrid-cast approach, the total bit rate needed for the video streams is different from the raw pixel
savings in that video streams are encoded in fixed frame size, and then transmitted. Note that,
in our case, this is equivalent to exploring whether there is high correlation between pixel ratio
savings and bit rate savings. The reason is that in our experiments, we obtain pixel ratio and bit
rate savings for two approaches (proposed approach and conventional approach) with the same
setting of video resolution and frame rate. The pixel ratio savings equals pixel savings divided by
number of pixels in one frame (e.g., 1920x1080 pixels) while the bit rate savings equals the savings
in number of bits times the value of frame rate. Thus, high correlation (between pixel ratio savings
and bit rate savings) and high correlation (between pixel savings and number of bit savings) are
two equivalent statements in our discussion.

To demonstrate the above, we perform live experiments for the two virtual space applications.
For the virtual classroom application, we assume that there are two students in the same row, sit-
ting close to each other, and a teacher is walking fast at the front of the classroom. The view centers
of the students keep moving and are always towards the teacher, i.e., focusing continuously with
movement of the teacher. We record 750 frames (30s assuming 25fps). Then we encode the video
using H.264 after applying our approach. In our implementation, we only need to broadcast pri-
mary views and unicast residual views (instead of secondary views). Residual views are encoded
full frame size, with common pixels replaced by black pixels. (Thus, we don’t explore any further
pixel savings by downscaling.) We also perform the live experiment using the virtual gallery ap-
plication. In our setup, parameters are set the same except that two visitors stand farther away
from each other, and both watch a slowly moving tour guide.

Table 8 summarizes the experimental results for the above two scenarios, in terms of the average
pixel ratio of the rendered frames, the total bit rate needed for the resulting encoded video frames,
and the savings achieved by using the proposed approach for both the average pixel ratio and
the total video bit rate. For the virtual classroom application, the savings in average pixel ratio
is 41.0% while the savings in the total bit rate is 39.0%. For the virtual gallery application, our
proposed approach produces 18.5% savings in average pixel ratio while the savings in total video
bit rate is 15.7%. The results show that there is a high correlation between pixel ratio savings and
bit rate savings for both the virtual space applications. And as shown in Appendix A, the bit rate
savings using our approach also leads to substantial savings of cloud costs.
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5.4 Empirical Results Validating Complexity Analysis

As is mentioned in Section 4.4, our proposed grouping algorithm has a computation complexity of
O(nKI,), where n is the number of users, I,, is the number of iterations in Kmeans procedure, and
K is the maximum number of groups we traverse. Next, we empirically estimate upper bound for
K and I,,, and show that the complexity of our proposed algorithm can be practically simplified
as O(n). We perform the experiments using the virtual classroom application, with seat patterns
setting from 4x4 to 10x10. For a given seat pattern, we generate 100 different seat pattern configu-
rations and implement our grouping algorithm. We also calculate the average of parameters (i.e.,
k, I, runtime) for these seat pattern configurations.

Specifically, Figure 17(a) demonstrates the optimal number of groups from our algorithm versus
total number of users. The three lines represent the optimal, average number of groups across all
seat patterns. We observe that the number of groups show similar trends and are generally smaller
than +/n, across all seat patterns. In our implementation, we empirically bound the maximum
number of groups K = 10.

Figure 17(b) shows the number of iterations I, versus the number of users. The dashed line
demonstrates the average I, considering the number of users. We can see an increase in I, with
the increase in n when the I, = 20 and 50, and similarly for I,, = 1 with some fluctuations. The
results indicate a steady, if not increasing I,,.

In addition, we explore the relation between the runtime and the total number of users. Figure 18
shows the runtime versus the number of users when I,, = 1, 20, 50. The lines represent the average
runtime across all seat patterns. The results show that the average runtime grows linearly with the
total number of users, i.e., O(nK1I,) can be simplified as O(n) in that (i) K is bounded to be 10 and
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Table 9. Congestion-Related Latency in Bandwidth-Limited Network

Approaches Settings Latency
Conv. Approach ' 10 users Min~600ms

(bit rate: 23Mbps*10) Max>1s

10 users Min<1ms

Prop. Approach

(bit rate: 11Mbps*9+23Mbps) | Max~5ms

(ii) I, is practically a small constant. Overall, our proposed algorithm V'S — GRP can be executed
in real time with linear time complexity, with similar solution quality to the optimal algorithm,
while consuming negligible runtime. As presented in Appendix C, we also perform experiments
on the virtual gallery application to validate our complexity analysis.

5.5 Congestion-Related Latency

In this experiment, we show the congestion-related latency improvement by utilizing our hybrid-
cast approach. For the server side, we deploy our model in an Ubuntu 16.04 TLS system hosted on
the Amazon Web Service (AWS) [8] server, equipped with a 2.6GHz Intel Xeon processor, 16GB
RAM, and a NVIDIA GRID GPU. For the client side, we simulate a 10-user scenario by deploying
to 10 nodes, each with the same, above-mentioned machine configuration. We assume that there
is only one group (i.e., one user with a primary view and nine users with secondary views). We
use DummyNet [10] to emulate the wireless network, specifically network bandwidth profiles
experienced by the virtual space data transmitted from the AWS server.

To measure the latency from AWS cloud server to the user’s client, we performed experiments
to record the round-trip delay needed with different network bandwidth profiles. Figure 19 shows
a fluctuating bandwidth profile (for 55s), with an average available bandwidth of approximately
200Mbps. We emulate two cases: using conventional method (all user views unicast) and proposed
method (one group with one primary view broadcast and nine residual views unicast). We record
a 55s video of one user view (23Mbps) and a 55s video of its corresponding residual view (11Mbps)
separately. We assume that within the 55s period, a user will receive approximately 11Mbps video
as residual view with our proposed hybrid-cast approach while the user needs to receive 23Mbps
with the conventional method. Table 9 reports the latency measured under these two different
settings. In the setting using the conventional method, since the realistic bit rate needed is larger
than available bandwidth, the latency varies from a low of around 600ms to a high of larger than
1s. However, with our proposed hybrid-cast approach, the bandwidth needed is significantly de-
creased and thus the latency achieved is much smaller (i.e., <5ms).

Note the above analysis assumes all users are associated with the same base station (or at least
the same cellular gateway) and cloud server. Hence the bandwidth savings using our approach
can help in reducing the congestion-related latency. However, as described in Section 3.2, if the
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users are not associated either with the same base station or the same cellular network gateway,
latency reduction may not be achievable using the proposed approach. With the above assumption,
the results demonstrate the significant advantage our proposed hybrid-cast approach may have to
alleviate congestion-related latency in fluctuating and bandwidth-limited wireless networks.

6 CONCLUSION

In this article, we propose a multi-user hybrid-cast approach to significantly reduce the total bit
rate needed to stream high-quality videos to multiple users in a virtual space application. Instead
of unicasting the video of each user view, we introduce the novel approach that allows unicast-
ing much lower-bandwidth residual views, together with one or more common view(s). Then we
propose an efficient way of identifying common and residual views. To minimize the total bit rate,
we develop a smart real-time algorithm for grouping the users of the virtual space, using a novel
grouping metric. Our experimental results demonstrate the effectiveness of our proposed group-
ing algorithm both in terms of optimal performance and speed. Furthermore, the results show that
the total bit rate needed to transmit multiple user views can be significantly reduced by up to 55%,
and thus provide better user experience (less delay) under a constrained network.

Our future research interests include: (i) integrating our hybrid-cast approach with a real net-
work (e.g., Wi-Fi or cellular); (i) studying data routing, forwarding and related protocols for data
transmission in hybrid-cast approach; (iii) considering more complex virtual spaces, including ir-
regular shapes and topologies; and (iv) analyzing the case of having multiple primary views in the
same group and the corresponding performance benefit.
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ONLINE APPENDIX
A CLOUD COST SAVINGS

Based on the experiments described in Section 5.5, we perform two experiments: (i) estimating the
savings obtained by our proposed approach in terms of cloud bandwidth and the consequent cloud
cost for different number of days, and (ii) calculating total monthly cost for different number of
users. Specifically, we estimate the cloud cost charged using conventional approach and proposed
approach when the service provider of the virtual space application uses AWS. We experimentally
choose to have 10% users with primary views (23Mbps) and 90% users with residual views (11Mbps).
We calculate corresponding cloud cost using the AWS pricing model in Table 10 [7].

Figure 20(a) shows the accumulative data transfer and total cost for 10 days (with assumption
of 100 users in the virtual space). We can observe that the total cost (denoted by orange lines)
increases sublinearly when the accumulative data transfer increases linearly due to segmented
pricing in AWS pricing model. The total cost savings are the difference between two orange lines.
We can see that the accumulative data transfer reaches around 240TB and 125TB respectively by
employing conventional and proposed approaches, for 100 users in 10 days. The corresponding
total cost saving is around $5000 for 100 users in 10 days using our proposed approach.

Figure 20(b) presents the total monthly cost versus different number of users. The blue bar and
green bar denote the total monthly cost using conventional approach and our proposed approach
respectively. We can observe that total monthly cost grows continuously with the increase in the
number of users. For 1000 users, the total monthly costs are up to $367,800 and $170,000 respectively
using conventional and proposed approaches, which can translate to a substantial cloud cost saving
of $2.04M annually for the virtual space service provider. Note the above analysis assumes existence
of multicast protocols in the cloud network connecting cloud servers to core network gateways.
While such multicast protocols are being researched and developed, the service provider savings
discussed in Appendix A will need to wait deployment of the such protocols in the future.

Table 10. Pricing model per month on Amazon Web Service.

Data Transfer Price
First 1GB $0 per GB
Up to 10TB | $0.09 per GB
Next 40TB | $0.085 per GB
Next 100TB | $0.07 per GB
Next 350TB | $0.05 per GB
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Fig. 20. (a) Accumulative data transfer (left y-axis) and total cost (right y-axis) versus the number of days, for
100 users in the virtual space; (b) Total monthly cost versus different number of users in the virtual space.

B LATENCY ON THE SERVER AND CLIENT SIDES

In this section, we show the latency for tasks on the server side and client side. In terms of latency
for the rendering, encoding and decoding tasks, we give the estimated values according to their



Table 11. Latency for procedures on the server side.

Procedures Latency

Rendering 4-9ms
Residual View Calculation | ~2.5ms

Encoding 3-8ms

Table 12. Latency for procedures on the client side.
Procedures | Latency
Decoding | = 3ms

Synthesis | = 2.5ms

current advanced implementations [27, 29, 41]. Then we measure the latency for residual view
calculation and synthesis by ourselves.

Table 11 and Table 12 present the latency for the various tasks performed on the server side
and client side respectively, besides the latency of our proposed grouping algorithm discussed
earlier. Specifically, on the server side, the tasks performed are real-time rendering, residual view
calculation and encoding, in sequence. Meanwhile, the server will cluster users into different groups
at short intervals (e.g. every 100ms) with our proposed grouping algorithm. On the client side,
decoding task will be performed for primary users while decoding and synthesis (of primary and
secondary views) tasks will be performed for secondary users.

Since the fundamental limitation of dumping the frame information in real-time from Unity [33],
we demonstrate the ability of real-time residual view calculation using a separate program. Our
program is written in C++ using 64-thread on a Xeon 2-CPU server. We calculate the residual view
calculation for 1080p frame 100 times and report the average latency in Table 11 and Table 12. We can
observe the average latency as 2.5ms. When using GPU parallel implementation (i.e. computation
is executed for pixels in a frame in parallel instead of sequentially), we can expect smaller latency
for these two tasks.

C COMPLEXITY ANALYSIS FOR VIRTUAL GALLERY

To analyze the complexity in the various scenarios, we also perform experiments on the virtual
gallery application. We empirically estimate upper bound for maximum number of groups traversed
K and the number of iterations in K-means procedure I, and validate that the complexity of our
proposed algorithm can be practically simplified as O(n). We conduct experiments with number of
users (i.e. 16, 25, 36,. .. 100), randomly located in the virtual gallery space as explained before. For
a given number of users, we generate 100 different user topologies and implement our grouping
algorithm on every user topology. We also calculate the average of parameters (i.e. k, I, runtime)
for these different user topologies.

Figure 21(a) shows the optimal number of groups k selected by our algorithm versus total number
of users. The dashed lines represent, for different values of I,, used, the average number of groups
across all user topologies, considering the number of users. We observe that the number of groups
demonstrate similar trends and are generally smaller than v/n, across all user topologies. In our
implementation, we empirically bound the maximum number of groups K = 10. Figure 21(b)
presents the number of iterations needed by our algorithm, I,,, versus the number of users. The
dashed lines demonstrate the average I, considering the number of users. We can see a slow
increase in I, with increase in number of users n. The values of number of iteration I, are also
identical when I,, = 20 and 50, and similarly for I,, = 1 with some fluctuations.

Figure 22 presents the runtime versus the number of users in virtual gallery applications. Com-
pared with the empirical results in virtual classroom, we can see that the average runtime grows
linearly with the total number of users. The difference is that the runtime for gallery application



Number of Groups k

o
3

11
W
51|~ - -1,-1 (ave)
1,-20
> -
=745 1,,-20 (Avg) e
5 + 1,750 - N
F 4= - -1,-50 (Avg) Rl ‘i_‘__-
9] / P
Z 35 e
o - v
[ ™ Y
g s AT
5 25 ’i e
3 25§,
b
2 ie
w
15

20 40 60 80
Number of Users n

100

20

40 60 80
Number of Users n

100
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Fig. 22. The run time versus the number of users when I,, = 1, 20, 50 respectively in virtual gallery. The line
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scenarios is slightly larger than for virtual classroom due to more randomness in user locations
(topologies) in the former. The number of iterations I,, for virtual gallery cases is also slightly larger
than for virtual classroom scenarios, as shown in Figure 17(b) and Figure 21(b).



