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Abstract—As 360-degree videos and virtual reality (VR) ap-
plications become popular for consumer and enterprise use
cases, the desire to enable truly mobile experiences also in-
creases. Delivering 360-degree videos and cloud/edge-based VR
applications require ultra-high bandwidth and ultra-low latency
[1], challenging to achieve with mobile networks. A common
approach to reduce bandwidth is streaming only the field of
view (FOV). However, extracting and transmitting the FOV in
response to user head motion can add high latency, adversely
affecting user experience. In this paper, we propose a predictive
adaptive streaming approach, where the predicted view with high
predictive probability is adaptively encoded in relatively high
quality according to bandwidth conditions and transmitted in
advance, leading to a simultaneous reduction in bandwidth and
latency. The predictive adaptive streaming method is based on
a deep-learning-based viewpoint prediction model we develop,
which uses past head motions to predict where a user will
be looking in the 360-degree view. Using a very large dataset
consisting of head motion traces from over 36,000 viewers for
nineteen 360-degree/VR videos, we validate the ability of our
predictive adaptive streaming method to offer high-quality view
while simultaneously significantly reducing bandwidth.

Index Terms—Virtual reality, video streaming, 360-degree
video.

I. INTRODUCTION

RECENTLY, 360-degree videos and virtual reality (VR)
applications have attracted significant interest in vari-

ous fields, including entertainment, education, manufacturing,
transportation, healthcare, and other consumer-facing services.
These applications exhibit enormous potential as the next
generation of multimedia content to be adopted by enterprises
and consumers via providing richer, more engaging and more
immersive experiences. According to market research [2],
VR and augmented reality (AR) ecosystem is predicted to
be an $80 billion market by 2025, roughly the size of the
desktop PC market today. However, several key hurdles need
to be overcome for businesses and consumers to get fully
on board with VR technology [3], such as cheaper price and
compelling content, and most importantly a truly mobile VR
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Fig. 1. FOV in a 360-degree view.

experience, in line with the expectation and adoption of mobile
experiences in almost all consumer and enterprise verticals
today. Of particular interest is how to develop mobile (wireless
and lightweight) head-mounted displays (HMDs), and how to
enable VR experience on the mobile HMDs using bandwidth
constrained mobile networks, while satisfying the ultra-low
latency requirements.

Current widely used HMDs approximately include three
types [4]: PC VR, console VR, mobile VR. Specifically, PC
VR is tethered with PC [5], [6]; console VR is tethered with
a game console [7]; mobile VR is untethered with PC/console
but with a smartphone inside [8], [9]. Since all the above
HMDs perform rendering locally either on a smartphone
tethered with the HMD, or on a computer/console tethered
to the HMD, today’s user experience lacks portability (when
using a heavy HMD tethered to a smartphone) or mobility
(when tethered to computer/console). To enable lighter mobile
VR experience, we propose a cloud/edge-based solution. By
performing the rendering on cloud/edge servers and streaming
videos to users, we can complete the computation-intensive
tasks on the cloud/edge server and thus enable mobile VR
with lightweight VR glasses. The most challenging part of
this solution is the ultra-high bandwidth and ultra-low la-
tency requirements, since streaming 360-degree video causes
tremendous bandwidth consumption and good user experi-
ences require ultra-low latency (<20ms) [1], [10]. Various
techniques have been developed for video content delivery
such as adaptive streaming algorithms [11], [12], mobile
edge caching placement algorithms [13] and hybrid multicast-
unicast schemes [14], [15], but these approaches are designed
for ordinary videos, and thus have not considered the scenario
of 360-degree video streaming.

Motivated by this challenge, in this paper, we propose a
novel approach to enable mobile VR with prediction for head
motions. Our basic idea comes from the following observa-
tions: the field of view (FOV) is 90°⇥90° for popular HMDs
while the 360-degree view is 360°⇥180° in size (as is shown in
Fig. 1). A common approach to reduce bandwidth is streaming
only the FOV. However, extracting and transmitting the FOV in
response to user head motion can add high latency, adversely
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affecting user experience. This motivates us to predict head
motions. With prediction for head motion, our approach can
address both bandwidth and latency challenges.

If we can predict head motion of users in the near future, we
can achieve predictive rendering (in case of VR) and encoding
on the edge device, and then stream the predicted view (i.e., a
360-degree view with more bits for the FOV tiles and less for
non-FOV tiles) to the HMD in advance. Thus, latency needed
will be significantly reduced since the view is delivered and
pre-buffered on the HMD. Moreover, in order to address the
challenge of dynamically varying network bandwidth condi-
tions, we use the viewpoint prediction to guide the bitrate
adaptation of the stream (i.e., allocate more bits for the FOV
tiles and less for non-FOV tiles to compose the predicted
view). Thus, good user experience can be achieved under the
dynamically varying network bandwidth conditions. Note that
since viewpoint is defined as the center of FOV, prediction
for head motions is equivalent to viewpoint prediction in this
case. The main contributions of this paper can be summarized
as follows:

• We propose a new approach to enable truly mobile VR
using wireless HMDs, where the rendering is performed
on edge devices, and the ultra-low latency and high
bandwidth requirements are addressed through a novel
predictive adaptive streaming approach involving view-
point prediction.

• We develop a viewpoint prediction method using deep
learning to predict where a user will be looking into in
the 360-degree view based on their past behavior. Using
a very large dataset of real head motion traces from VR
applications, we show the feasibility of our long short-
term memory (LSTM) model with high accuracy.

• To address fluctuating and constrained wireless band-
width available, we propose a novel predictive adap-
tive streaming algorithm. Given the available bandwidth
constraint, it selects proper video encoding settings for
each tile based on the viewpoint prediction such that
user experience is maximized, i.e., PSNR in user FOV
is maximized, where user FOV is defined as the actual
user field of view in size of 90°⇥90°.

• While adaptive streaming of 360-degree and VR videos
has been proposed before, to the best of our knowledge,
this is the first predictive adaptive streaming method
proposed in the literature. Using a large-scale real head
motion trace dataset, we demonstrate significant band-
width savings while ensuring very high PSNR in the user
FOV. We also demonstrate significant quality, bandwidth
and network capacity benefits compared to streaming
without bitrate adaptation, and a recent adaptive stream-
ing method which does not utilize prediction like our
method does.

Note that a preliminary version of our work was published
recently at a workshop [16], where we report on the predictive
LSTM model and some preliminary results. In this article, we
extend our approach by proposing a smart real-time predictive
adaptive streaming algorithm, improving our proposed view
generation strategy and conducting experiments on various

360-degree/VR videos.
The remainder of the paper is organized as follows. In

Section II, we review related work. Section III introduces the
system overview and problem definition. Section IV describes
our dataset and its characteristics. Section V and Section VI
describe our proposed predictive LSTM model and predictive
adaptive streaming algorithms. We present our experimental
results in Section VII and conclude our work in Section VIII.

II. RELATED WORK

In this section, we review current work in the following
topics related to our research.

FOV-guided streaming: Current FOV-guided 360-degree
video streaming studies mainly consist of two types to address
bandwidth challenge: tiling and versioning [17]. As for tiling,
360-degree video is spatially divided into tiles and only tiles
within FOV are streamed at high quality while remaining
tiles are streamed at lower qualities or not delivered at all
[18]–[20]. In terms of versioning, the 360-degree video is
encoded into multiple versions which have a different high-
quality region, and viewers receive the appropriate version
based on their own viewing direction [21]. The above methods
are based on knowing the actual viewpoint of the user as it
happens. Hence, while they can reduce bandwidth requirement
of streaming 360-degree video, they cannot reduce the latency
as rendering and encoding still need to be done in real-time
after user FOV is determined. In contrast, our method aims
to predict the user viewpoint and deliver the predicted FOV
in advance, thus eliminating the need for rendering (in case
of VR) or extracting FOV (in case of 360-degree videos) and
transmitting from servers over mobile networks after the user
has changed viewpoint, and hence addressing the ultra-low
latency requirement besides significantly reducing bandwidth.

Streaming with novel schemes: Some studies [22], [23] rec-
ognized ultra-low latency and ultra-high bandwidth challenges
in the transmission of 360-degree videos and VR applications.
[22] proposed a multipath cooperative routing scheme with
software-defined networking architecture to reduce the delay
and energy consumption of VR wireless transmissions in 5G
small cell networks. [23] also studied a new link scheduling
and adaptation scheme to reduce system latency and energy
consumption in VR video streaming. By contrast, we are
addressing the latency and bandwidth challenges with our pro-
posed adaptive streaming approach, which can be applied on
any existing wireless network without any special modification
or provisioning of the network required by [22], [23].

Sequence prediction: Viewpoint prediction and related mo-
bility prediction (since viewpoint prediction is equivalent to
prediction for viewpoint mobility) both belong to the problem
of sequence prediction, which is defined as predicting the
next value(s) given a historical sequence [24]. We roughly
summarize the approaches for sequence prediction as two
types: traditional machine learning and deep learning methods.
On one hand, traditional machine learning approaches such as
randomized decision trees and forest [25], [26] have proven
fast and effective performance for many sequence prediction
tasks [27], [28]. Bootstrap-aggregated decision trees (BT) [25]
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is one of the most efficient methods among them. On the other
hand, deep learning methods such as recurrent neural networks
(RNN) and their variants including LSTM networks [29] and
gated recurrent units (GRU) [30] have proven to be successful
for sequence prediction tasks [31], [32]. Apart from RNN and
their variants, there are also some studies [33], [34] using
deep neural networks including deep belief networks (DBN)
[35] and stacked sparse autoencoders (SAE) [36] to achieve
sequence prediction. Among these deep learning methods,
LSTM recurrent neural networks show a good potential to
capture the transition regularities of human movements since
they have memory to learn the temporal dependence between
observations (i.e., training data) [31], [32]. Inspired by this
advantage, we design an LSTM model which can learn general
head motion pattern and predict the future viewpoint position
based on the past traces. Our prediction model shows promis-
ing results on a large-scale real head motion trace dataset.

Head motion prediction: Some studies [37]–[39] explore
the feasibility of head motion prediction. Most of them used
relatively simple models with euler angles or angular velocity
as input without a tile-based perspective. Our proposed multi-
layer LSTM model benefits from the design of our tile-
based representation and the large-scale dataset, and thus
performs better. Some studies [40], [41] also investigate more
complicated prediction models to benefit 360-degree video
experience. [40] achieves gaze prediction using the saliency
maps and gaze trajectories (collected by an extra eye tracker),
while [41] studies fixation prediction employing the saliency
maps, motion maps, and head motion. However, the gaze
prediction technique [40] cannot be implemented directly since
most of current HMDs cannot track gaze, and the prediction
models in [40], [41] are more time-consuming (i.e., 47ms and
50ms respectively) than our proposed prediction model (i.e.,
<2ms) because it needs more processing time of extracting
image saliency maps and motion maps from videos. Our
proposed prediction method achieves high accuracy in real
time by using only head motion information, and thus are
more efficient and concise for our current 360-degree video
streaming scenarios to address the ultra-low latency challenge.
Furthermore, these current studies [37]–[41] do not further
consider the possibility of doing adaptive streaming using head
motion prediction.

Adaptive streaming: Several techniques have been proposed
for adaptive streaming for 360-degree videos [21], [42], [43].
[42] proposed to stream the 360-degree video based on aver-
age navigation likelihood, while [43] considered optimization
based on expected quality distortion, spatial quality variance
and temporal quality variance to do the 360-degree video
streaming. [21] proposed to stream one of multiple representa-
tions of the same 360-degree video, where each representation
has a different quality emphasized region in the 360-degree
view, such that bitrate fits the available throughput and a full
quality region matches user’s viewing. However, the above
techniques [21], [42], [43] do not consider the problem of
adaptive streaming in advance using prediction of user head
motion to minimize latency.

To the best of our knowledge, we are the first to consider
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the problem of streaming predictively in advance of the actual
user view so as to ensure ultra-low latency requirement of
360-degree video/VR, and using viewpoint prediction to guide
the bitrate adaptation of the stream so that the highest user
experience can be achieved under the dynamically varying
network bandwidth conditions.

III. SYSTEM OVERVIEW

In this section, we present an overview of our system. Note
that our predictive adaptive streaming approach works for
both 360-degree videos and cloud/edge-based VR applications,
since it refers to (i) adaptively selecting encoded tiles (in
case of 360-degree videos), and (ii) rendering the view and
adaptively encoding tiles (in case of cloud/edge-based VR)
depending on the predicted probability of each tile to belong to
the user’s actual FOV and bandwidth conditions. User’s head
motion as well as other controlling commands will be sent
to the edge device, which performs viewpoint prediction and
predictive rendering. The edge device can be either a Mobile
Edge Computing node (MEC) in the mobile radio access or
core network (Fig. 2(a)), or a Local Edge Computing node
(LEC) located in the user premises or even his/her mobile
device (Fig. 2(b)). Note that each of the above choices has
tradeoffs. Use of MEC will allow for greater mobility of the
VR user as compared to LEC, unless LEC is the user’s mobile
device, in which case the additional (computing) challenge
of having to do predictive view generation in the mobile
device will need to be addressed. On the other hand, use of
MEC will add to more transmission delay of the rendered
video than the use of LEC. Use of cloud servers can also
be considered to perform predictive view generation; this
will allow complete mobility of VR users but will be more
challenging in decreasing latency than the use of either MEC
or LEC. This paper will not specifically address the above
tradeoffs and select either MEC or LEC. Instead, the predictive
adaptive streaming technique we propose will apply to either
of the edge device options. Note that the primary novelty of
our approach in addressing the ultra-low latency requirement
is in accurately predicting the user’s view in advance and pre-
delivering the predictive view so additional rendering (in case
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TABLE I
VR DATASET STATISTICS.

Categories #Video Video Instances
Movie Trailer 6 Kong VR, Batman Movie
Documentary 6 Fashion Show, Life on Mars
Scenery 4 Whale Encounter, Floating Markets
Entertainment 3 Roller Coaster, Bungee Jump
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Fig. 4. Statistics of dataset.

of VR) or extracting FOV (in case of 360-degree videos) and
transmission time is avoided; our approach does not make any
special use of edge devices, except that use of edge devices is
recommended as opposed to cloud computing devices so as to
reduce additional round-trip transmission latency between the
computing device and the HMD. Based on past few seconds of
head motion and control data received from the user and using
the viewpoint prediction model developed, the edge device will
perform predictive adaptive streaming algorithm, and stream
the predicted view (i.e., a 360-degree view with more bits for
the FOV tiles and less for non-FOV tiles) to the user HMD in
advance. Later, the predicted view will be displayed on HMD
and latency needed will be significantly reduced since the view
is delivered and pre-buffered on the HMD before it is needed.
The key to achieving efficient predictive adaptive streaming is
to first solve the problem stated below.

Problem Statement: A viewpoint can occur in up to K dif-
ferent tiles in each time point (e.g., every 200ms). We decom-
pose the whole predictive adaptive streaming method into two
subtasks: viewpoint prediction and adaptive streaming, shown
in Fig. 3. In viewpoint prediction, given previous and current
viewpoint locations, our goal is to predict one or multiple tiles
that the viewpoint will be in for the next time point. In adaptive
streaming, according to the prediction results obtained from
viewpoint prediction, we maximize user experience by smartly
selecting proper video encoding (quantization step) settings of
the video for each tile under dynamically varying network
bandwidth conditions and do the streaming. After that the
predicted view will be delivered to users.

IV. DATASET AND ITS CHARACTERISTICS

In this section, we first describe the dataset we use, and
then show characteristics of the dataset using certain metrics
we define.

To investigate viewpoint prediction in 360-degree videos,
we conduct our study on a real head motion trace dataset that
was collected by Samsung Electronics Company. The trace
consists of head motion data from over 36,000 viewers during
the week of November 2 – November 8, 2017, for 19 VR
videos. Specifically, the frequency of head pose data was every
200ms on each HMD. The information reported includes the
content ID, session timestamp, content timestamp, user ID
and euler angles of HMD. The session timestamp and content
timestamp refer to the time counted since application launches
and the location in the video being played respectively, in
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Fig. 5. Head motion speed versus time in Kong VR.

milliseconds. Basic statistics of our head motion trace data
are shown in Table I. This dataset contains head pose data
for 19 online VR videos, which are available on the Samsung
VR website [44] and watched by a large number of viewers
worldwide using their own HMD. We aggregate these videos
by categories, i.e., movie trailer, documentary, scenery and
entertainment. In Fig. 4, we plot the cumulative distribution
function (CDF) of video duration and the number of viewers
for each video. We can observe that over 80% of videos have
more than 100s for duration and around 85% of videos have
more than 1000 viewers. The large diversity and number of
VR videos in the dataset, and the large number of viewers for
each video, makes the dataset very suitable for developing and
validating our viewpoint prediction method.

To depict key characteristics of the head motion and
viewpoint changes in the dataset quantitatively, we offer the
following definitions.

Definition 1— Head Motion Vector: Consider a viewer
watching a video in certain time-points t1 and t2, where
t1 < t2. We have corresponding head poses, which are
denoted by (x(t1), y(t1)) and (x(t2), y(t2)) respectively. Then
the head motion vector (4x,4y) can be represented as
(x(t2)� x(t1), y(t2)� y(t1)).

Definition 2— Head Motion Speed: The head motion speed
v is defined as the distance the head moved divided by time.

v =

p
4x2 +4y2

t2 � t1
(1)

For Kong VR video in our dataset, we draw a boxplot in
Fig. 5 to analyze head motion speed versus time. Fig. 5 shows
head motion speed distribution for over 1500 viewers during
60s with this boxplot. Every dark blue strip represents the
head motion speed distribution with an x-axis width of 1 (i.e.,
a width 1s in video time), whereas the height of a blue strip in
the y-axis indicates the interquartile range of the head motion
speed, reflecting the variability of the head motion speed.
Additionally, each light blue line represents the corresponding
maximum and minimum values and red symbols indicate the
median head motion speed. From this boxplot, we observe
that the distribution exhibits different properties when time
changes. For instance, at the time point of 3s, the median
head motion speed is as high as 35°/s, while 25 percent of
viewers have a head motion speed larger than 75°/s and 75
percent of viewers have a head motion speed larger than 10°/s
approximately. At another time point as 45s, median head
motion is around 10°/s, while 25 percent of viewers have
a head motion speed larger than 47°/s. The whole boxplot
presents the challenging situation of predicting head motion
since viewers may change viewing direction fast as well as
frequently. Moreover, we can see interquartile range of head
motion speed during 30-40s is around 5°/s-40°/s while during
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Fig. 6. Example of attention map.

50-60s interquartile range of head motion speed is 10°/s-50°/s
approximately. Thus, we take the sequence of 30-40s as an
example of medium motion sequence and the sequence of
50-60s as an instance of high motion sequence. As results
presented in Section VII show, viewpoint prediction and FOV
generation for high motion sequences are relatively more
challenging than for medium motion sequences, resulting in
either less FOV prediction accuracy, or larger FOV and hence
less bandwidth savings.

Definition 3— Attention Map: For n viewers, content times-
tamps cts1, cts2 (cts1 < cts2) denote the video clip the
viewers are watching. Attention map is defined as a series
of probability that a viewpoint is within a tile for n viewers
during time-period from cts1 to cts2. When we have K tiles in
one 360-degree view, we have K elements (i.e., probabilities)
in the attention map and the total sum of these probabilities is
1. When there are more tiles with relatively high probabilities,
viewpoint prediction will be more challenging since different
users may have multiple points of interest and require various
FOVs.

Fig. 6 shows an example of attention map, demonstrating
users’ attention distribution (for over 1500 viewers) during
1s within the high motion sequence in Kong VR video [45]
mentioned above. The value in legend represents the probabil-
ity that a viewpoint is within a tile for n viewers during the
given time-period. According to the legend, we can observe
that the yellow tiles attract most attention and viewers are
more likely to look at these areas. The yellow and red colors
indicate that the probability that a viewpoint is within the
corresponding tile is around 0.1 and 0.05 respectively for
all n viewers during the given time-period, meaning this tile
is of high interest for users. The attention map in Fig. 6
points to the feasibility of performing viewpoint prediction,
since there are always areas attracting more attention than
remaining areas within a 360-degree view. On the other hand,
the attention map in Fig. 6 shows multiple tiles (as high as 11
tiles) have relatively high probabilities (0.05-0.1), indicating
the difficulty of predicting viewpoint accurately. By visualizing
a series of consecutive attention maps in a given sequence,
we can observe the changes of viewpoint (as well as user
attention) continuously. With proposed metrics such as head
motion speed and attention map, we can characterize the
viewpoint as well as user attention from both temporal and
spatial perspectives.

V. VIEWPOINT PREDICTION

In this section, we describe our methodology of viewpoint
prediction. Given previous and current viewpoint locations,
our goal is to predict one or multiple tiles that the viewpoint
will be in for the next time point. In our dataset, head
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Fig. 7. The viewpoint representation, projected into coordinates in equirect-
angular map.
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motion files include user information, timestamp (time in
video content), euler angles (pitch, yaw, roll), etc. Euler angles
are shown in Fig. 7(a)) and timestamps appear each 200ms. We
transform euler angles into the variables x, y in the equirect-
angular map [46] for 360-degree view, which is presented
in Fig. 7(b). Variables x and y are within (�180, 180] and
[�90, 90] degrees respectively.

We use tile-based format for viewpoint feature representa-
tion. With each grid size as 30°⇥30°, the 360-degree view
can be divided into 72 tiles. We select 2s as the prediction
time window (i.e., predict viewpoint according to viewpoint
traces in past 2s), since it achieves better performance than
3s, 4s and 5s based on our experiments. Note our selection of
2s is in line with the observation made by [21]. For training
the model, we design a one-hot encoding representation [47],
[48] for viewpoint as a 72⇥10 matrix V . Each element of V
is 0 or 1. The dimensions of V correspond to the 72 tiles
in a 360-degree view for possible viewpoint positions, and
10 timestamps corresponding to 2s. Thus, the element vi,j of
matrix V equals to 1 when the viewpoint is within the i-th tile
at the j-th timestamp, and equals to 0 when viewpoint is not
within the corresponding tile. Another simple representation
for viewpoint is a 1⇥10 vector, where each element equals to i

when viewpoint is in the i-th tile. With the two representations
above, we can obtain viewpoint features from previous and
current viewpoint locations.

Inspired by the good performance of LSTM to capture
transition regularities of human movements since they have
memory to learn the temporal dependence between observa-
tions [31], [32], we design a multi-layer LSTM model which
can learn general head motion patterns and predict the future
viewpoint position based on the past traces. Fig. 8 shows the
LSTM model we designed and used in our training, where
first and second LSTM layers both consist of 128 LSTM
units, and the fully connected layer contains 72 nodes. Our
LSTM model predicts the next tile within which the viewpoint
will be, given the previous sequence of viewpoint tiles. The
outputs are the predicted probabilities over the 72 possible
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tiles. The proposed model learns parameters by minimizing
cross-entropy and we train with mini-batches of size 30. Note
that the settings including 128 LSTM units, 72 nodes and 30
as mini-batch size are selected during experiments and proved
to be good by empirical results.

We can use the viewpoint prediction probabilities of the
tiles to generate an FOV, such that the probability that the
actual user view in the next time point will be within the
predicted FOV is maximized. In that case we will be able
to ”predictively stream” the generated FOV in advance of the
user’s actual user view in the next time point, instead of the en-
tire 360-degree/VR video, thus ensuring no additional latency
at the next time point, while at the same time minimizing
bandwidth consumption of the FOV transmitted (minimizing
pixels/bitrate of FOV). We define FOV prediction accuracy
as the probability that actual user view will be within the
predicted FOV (generated from one or multiple tiles).

In our preliminary work [16], we select m tiles with highest
probabilities predicted by the LSTM model, compose the
predicted FOV as the combination of FOVs for each selected
tile, and transmit the predicted FOV with high quality while
leaving the rest of tiles blank. Fig. 9 shows an example of FOV
generation when we select the top two highest probability tiles
(i.e., m = 2) provided by the LSTM model, where yellow area
illustrates the predicted FOV consisting of 26 tiles (i.e., the
combination of FOVs for two selected tiles). In our current
method, we build 120°⇥120° FOV around the center of the
selected tile. By doing this, we can guarantee that when the
viewpoint is within the predicted tile, the actual FOV is larger
than 90°⇥90° in size (i.e., 90°⇥90° when the viewpoint is at
the corner of predicted tile and 120°⇥120° when the viewpoint
is in the center of predicted tile). We can use choice of m to
achieve the desired trade-off between FOV prediction accuracy
and bandwidth consumed in transmitting the predicted FOV.

As we show in Section VII.A, a very high FOV prediction
accuracy can be obtained using the above method, while
also saving significant bandwidth compared to transmitting
the entire 360-degree video. However, the above predictive
streaming approach may not work, as the wireless network
bandwidth available may not be always sufficient to transmit
the predicted FOV with high accuracy (that is, considering
high enough number of ”m” tiles), thereby necessitating
the predictive adaptive streaming approach we propose and
describe in Section VI.

VI. PREDICTIVE ADAPTIVE STREAMING ALGORITHM

While predictive streaming of FOV generated using view-
point prediction in advance of the user actually looking at
the FOV can address the ultra-low latency requirement of
immersive 360-degree or VR experience, as mentioned earlier
we also need adaptive streaming to address the challenge

TABLE II
NOTATIONS USED.

Notation Meaning

BW (t) network bandwidth limit for time slot t
pfov(k) predicted FOV probability for tile k

K total number of tiles
qp quantization parameter (QP)
L number of levels in quantization parameter
q quantization step

I(V E) impairment caused by video encoding (VE)
qk optimal quantization step for each tile k

MSE(q)
mean square error (MSE) between encoded tile video data
and corresponding raw video data for quantization step q

R(q) bitrate for quantization step q

a, b, ✓, � parameters in bitrate and MSE models
pv viewpoint probability

i, j, k index parameters for tiles
qmin minimum boundary of quantization step setting
Rmax bitrate when encoding with setting of qmin

MSEmin MSE when encoding with setting of qmin

of fluctuating network bandwidth conditions. Hence in this
section we propose a novel predictive adaptive streaming
method. We investigate how viewpoint prediction can also
be used to develop an effective adaptive streaming technique
for 360-degree and VR videos, such that user experience can
be maximized under dynamically varying network bandwidth
conditions. Note that our predictive adaptive streaming algo-
rithm will be executed every time slot (e.g., 200ms) using
the network bandwidth at the beginning of the time slot. This
way, our approach can address dynamically changing network
bandwidth conditions.

We define FOV probability as probability of a given tile to
belong to the user’s actual FOV, where the actual user FOV
refers to the actual user field of view in size of 90°⇥90°. Our
proposed algorithm aims to maximize user experience (i.e.,
maximize the quality of tiles with high FOV probability) by
smartly selecting proper video encoding (quantization step)
settings of the video for each tile. We can find an optimal so-
lution for maximizing user experience (minimizing impairment
I) given a bandwidth limit BW (t) for time slot t. Finally, we
give an analysis of the algorithm complexity. The notations
used in our approach are described in Table II.

A. Problem Formulation
We formulate the problem as an optimization problem as

follows. Since minimizing impairment I caused by video
encoding (VE) equals to maximizing user experience, we set
our optimization target as minimizing I , where I is defined
as I(V E) =

PK
k=1 pfov(k)MSE(qk), MSE(q) represents

mean square error between the encoded tile video data and
the corresponding raw video data for quantization step q, and
qk denotes the optimal quantization step for each tile k. And
qp1 as well as qpL are the minimum and maximum boundaries
of quantization step (QP) settings used for an application. This
optimization problem aims to minimize impairment caused by
video encoding under constraint of the bandwidth limit.
Given:
1) Network bandwidth limit BW (t) for time slot t

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 18,2020 at 00:42:49 UTC from IEEE Xplore.  Restrictions apply. 
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2) Predicted FOV probability pfov(k) for each tile k, and total
number of tiles K

3) Quantization parameter set {qp1, qp2, . . . , qpL}
4) Model parameters including a, b, ✓, �

Find:
The optimal quantization step qk for each tile k to minimize
impairment

I
OPT = min

qk
I(V E) = min

qk

KX

k=1

pfov(k)MSE(qk) (2)

s.t.
KX

k=1

R(qk)  BW (t) (3)

qk = (2(1/6))QP l�4
, k 2 {1, 2, . . . ,K} (4)

QP l 2 {qp1, qp2, . . . , qpL}, l 2 {1, 2, . . . , L} (5)

MSE(qk) = a · qk + b (6)

R(qk) =
✓

q
�
k

(7)

B. Viewpoint Probability and FOV Probability
From our predictive LSTM model described in Section VI,

we can obtain the viewpoint probability for each tile. In this
subsection, we study how to calculate the FOV probability
based on viewpoint probability. Note that FOV probability
pfov is defined as the probability of a given tile to belong
to the user’s actual FOV, while viewpoint probability pv is
defined as whether the user viewpoint is within a given tile.
Equation 8 describes the relationship between pfov and pv .
We use Fig. 10, a frame in an example 360-degree video, as
an instance to illustrate how to calculate pfov from pv .

pfov =
X

i

pv(i) + 0.5 ⇤
X

j

pv(j) + 0.25 ⇤
X

h

pv(h) (8)

where pfov and pv refer to the FOV probability and view-
point probability corresponding to a tile, and i, j, k are index
parameters for tiles surrounding this given tile. For example,
consider the red dashed tile (tile #1) in Fig. 10; in this case,
tile i belongs to tiles #1-#9, tile j belongs to tiles #10-#21, and
tile h belongs to tiles #22-#25. This equation describes that the
probability of the red dashed tile (tile #1) will belong to the
actual user FOV (including both totally- and partially- within
cases) equals to the probability of user viewpoint is within the
total colored area (including purple, orange and yellow area),
since we assume that the user FOV is 3⇥3 tiles corresponding
the size of 90°⇥90°. Specifically, the former refers to the left

22 10 11 12 23
13 2 3 4 14
15 5 1 6 16
17 7 8 9 18
24 19 20 21 25

Fig. 10. Illustration for the calculation of FOV probability pfov from
viewpoint probability pv .

Instance of calculating the “weight” (!"#$)

1

(a) !% for each tile (b) !&'% for each tile

!"#$ = ∑* !(,)+ 0.5∗ ∑/ !(0) + 0.25 ∗ ∑6 !(7)

Fig. 11. Instances (a) left, pv for each tile (b) right, pfov for each tile.

TABLE III
EXPERIMENT SETTING.

Settings Experimental Values

QP 15, 20, 25, 30, 33, 37, 40
Corresponding q 3.5, 6.5, 11, 20, 28, 44, 64

Resolution 4K (3840x2160) for two views, 3840x1080
for each view

GOP and Framerate GOP: 12, framerate: 60fps

side of the equation, while on the right side, the first, second
and third terms represents the probability of the viewpoint
is within purple, orange and yellow area respectively. Note
that the second and third terms assume that the viewpoint
has the average probability distribution within the same tile.
Fig. 11 presents an instance for the pv for each tile and the
corresponding pfov for each tile using Equation 8.

C. Bitrate and MSE Models
In this subsection, we study and model the relationship

between video encoding setting used for the 360-degree/VR
video (quantization step q) and the resulting bitrate (R) as
well as mean square error (MSE), terms used in the problem
formulation in Section VI.A.

1) Bitrate Model and Validation: Next, we introduce how
we perform experiments to validate the model of relationship
between the bitrate and quantization step q. Several techniques
have been proposed to model the bitrate of the encoded video
as a function of the video encoding parameters. [49] proposed
models of bitrate R using quantization step q and video frame
rate t. Since in this paper, we do not consider the influence of
different frame rate to bitrate, we fix the frame rate and thus
we can simplify the model in [49] as follows.

R(q) =
✓

q�
= Rmax(

q

qmin
)�� (9)

In order to derive and validate this bitrate model, we
encoded videos for 72 tiles respectively with different quan-
tization parameter (QP) settings from Table III. Using the
H.265/HEVC standard definition that q = (2(1/6))QP�4 [49],
the corresponding q values are 3.5, 6.5, 11, 20, 28, 44, and 64.
For each video, we encode it by using x265 encoding library
and record the bitrate under each q value. We set Rmax to be
the bitrate when encoding with qmin and calculate normalized
bitrate R(q)/Rmax.
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Fig. 12. Tiles selected for model validation of bitrate and MSE.

We randomly pick several tiles shown in Fig. 12 as tiles
a, b and c, and present results in Fig. 13(a)(b), where x-axis
of the figures is q and y-axis are the bitrate and normalized
bitrate in (a) and (b) respectively. The results of videos for
each tile are represented by a specific color. Bitrates are
shown as circles for the different tiles of videos and the
average value of all 72 tiles, we also plot a line for each
video tile to represent the model equation. The parameter �

is obtained by minimizing mean square error between the
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Fig. 13. Validation of model equation for bitrate (a) left, bitrate versus q (b)
right, normalized bitrate versus q.

TABLE IV
PARAMETERS FOR RELATIONSHIP BETWEEN q AND BITRATE.

Tile �
Tile a 1.056
Tile b 1.131
Tile c 1.244

Avg. of all tiles 1.195

model predicted and measured bitrates for each video of tiles.
Table IV shows the corresponding parameter � for the four
lines in Fig. 13, and we can also calculate the parameter ✓ in
Equation 9 accordingly. From Fig. 13, we can conclude that
Equation 9 can model the bitrate of 360-degree video tiles
using H.265/HEVC standard with high accuracy. Moreover,
we do the validation of bitrate estimation for the tile. Fig. 15(a)
shows the bitrate estimation results comparing the estimated
bitrate for tile versus actual bitrate for tile using another 18
3s-tile video clips encoded with different QPs (i.e., QP = 15,
20, 30). The correlation is 0.9979 indicating the high accuracy
of the proposed model (i.e., power law relationship between
q and bitrate).

2) Model Validation for MSE: We investigate the relation-
ship between the mean square error (MSE) and quantization
step q, where the MSE refers to mean square error between the
encoded tile video data and the corresponding raw video data
for the tile. MSE reflects the average deviation of encoded tile
pixels from their raw data counterparts. We adopt the linear
model [50] between q and MSE, and investigate modeling
how quantization step q influence encoding distortion MSE as
follows.

MSE(q) = a · q + b = MSEmin(a1 ·
q

qmin
+ b1) (10)

In order to validate the relationship between MSE and
quantization step q for videos of different tiles, we follow
the same encoding settings in Section VI.C 1), then calculate
the MSE and pick three tiles in Fig. 12 for illustration. In
Fig. 14, we use markers to show different data points and plot
a line for each video tile to represent the fitted model equation.
We set MSEmin to be the MSE when encoding with qmin

and calculate normalized MSE as MSE(q)/MSEmin. The
parameters a1 and b1 are also obtained by minimizing the
mean square error between the model predicted and measured
MSE for each video of tiles. Table V shows the parameters
obtained in our experiments, and we can also calculate the
parameters a and b in Equation 10 accordingly. From Fig. 14,
we can see that Equation 10 can model the MSE of 360-degree
video tiles using H.265/HEVC standard with high accuracy. In
particular, for higher quantization step q, larger distortion (i.e.,
higher MSE) can be observed for tiles with more dynamic
content (e.g., Tile c), while relatively smaller distortions are
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Fig. 14. Validation of model equation for MSE (a) left, MSE versus q (b)
right, normalized MSE versus q.

TABLE V
PARAMETERS FOR RELATIONSHIP BETWEEN q AND MSE.

Tile a1 b1
Tile a 0.6939 0.7825
Tile b 0.6169 0.9127
Tile c 0.7207 0.6791

Avg. of all tiles 0.7603 0.6806

obtained for relatively static content (e.g., Tile b). Furthermore,
we do the validation of MSE estimation for the tile. Fig. 15(b)
shows the MSE estimation results comparing the estimated
MSE for tile versus actual MSE for tile using another 18 3s-
tile video clips encoded with different QPs (i.e., QP = 15, 20,
30). The correlation is 0.9923 indicating the high accuracy
of the proposed model (i.e., linear relationship between q and
MSE). Note that in our experiments, we employ the parameters
obtained for average of all tiles to calculate the bitrate as well
as MSE.

9

(a) (b)

Fig. 15. Validation of bitrate and MSE estimation for tile (a) left, results for
bitrate (b) right, results for MSE.

D. Algorithm Description

We first describe the key ideas and insights of how we
analyze the problem and develop the algorithm. Then we
discuss the detailed steps of the algorithm.

First, notice that the problem we are to solve contains K

discrete variables (i.e., one variable for each tile). If quanti-
zation step q has L levels, then we have L

K combinations
for all qk variables (k 2 {1, 2, . . . ,K}). In our experiment,
we choose L = 3 resulting in 372 combinations in total when
the total number of tiles as K = 72. A brute-force algorithm
based on exhaustive enumeration of the exponential number
of combinations will be prohibitively expensive and cannot
be applicable in real-time to perform adaptive streaming
responding to real-time changes in network bandwidth. Hence,
we propose a heuristic greedy algorithm to select the q level
for each tile, such that impairment I is minimized (Eq. 2)
subject to the bandwidth and other constraints (Eqs. 3-7).

- VR-PAS Algorithm

In order to solve the above problem, we first propose a
heuristic greedy algorithm, VR Predictive Adaptive Streaming
(VR-PAS) algorithm, which runs periodically (in this paper
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Algorithm 1 VR-PAS Algorithm
Inputs:

1) Network bandwidth limit BW (t) for time slot t
2) Predicted FOV probability pfov(k) for each tile k, and
total number of tiles K

3) Quantization parameter set {qp1, qp2, . . . , qpL}
4) Model parameters including a, b, ✓, �

Output: The optimal quantization step qk for each tile k to
minimize impairment.

1: Initilization: for each tile k, set qk to be qmax (i.e., l(k) 
1, low quality), calculate the current bandwidth needed
BWcur and impairment Icur

2: while (BW cur < BW (t))&&!(all q == qmin) do
3: BWper  BWcur; Iper  Icur

4: for k = 1 : K do
5: l(k) l(k) + 1; qk  (2(1/6))qpl(k)�4

6: calculate BWcur and Icur

7: �BW k  BWcur �BWper

8: �Ik  Icur � Iper

9: l(k) l(k)� 1; qk  (2(1/6))qpl(k)�4

10: end for
11: Find k which has the maximum value of �Ik/�BW k

12: Set the change of qk of tile k as
l(k) l(k) + 1; qk  (2(1/6))qpl(k)�4

13: Calculate the new bandwidth needed BWcur and Icur,
check if the new BWcur > BW (t) then revert qk as
previous value

14: end while
15: return qk for each tile k

we set the period to be 200ms). At the beginning of each
time period, we will obtain the inputs of this algorithm: 1)
network bandwidth limit BW (t) for time slot t; 2) predicted
FOV probability pfov(k) for each tile k, total number of tiles
K, quantization parameter set {qp1, qp2, . . . , qpL}, and model
parameters (a, b, ✓, �). We use pfov(k) and model parameters
with Equation 7 to estimate the bitrate consumption in the next
time period. The output of the algorithm will be the optimal
quantization step qk for each tile k.

This problem can be formulated as a variant of discrete
knapsack problem [51], in which the bitrate consumed by each
tile k can be interpreted as its weight (i.e., w(k) = R(qk));
and the video encoding impairment caused by each tile k can
be regarded as its price (i.e., v(k) = pfov(k)MSE(qk)). The
problem can be restated as, for total K groups (K tiles), with
each group having L objects (L quantization steps), select
the optimal object (quantization step) for each group (tile),
such that the total weight of these selected objects does not
exceed the limit (BW (t) for time slot t), and the total price
(impairment) is minimized.

The underlying principle of the VR-PAS algorithm is as
follows:

Algorithm 1 shows the pseudo-code of the VR-PAS algo-
rithm. Initially we set the encoding quality of all tiles to be
Low (l = 1, quantization step max). Then we keep adjusting
the encoding quality of tiles using a while loop, as long as

Algorithm 2 VR-OPT Algorithm
Inputs:

1) Network bandwidth limit BW (t) for time slot t
2) Predicted FOV probability pfov(k) for each tile k, and
total number of tiles K

3) Quantization parameter set {qp1, qp2, . . . , qpL}
4) Model parameters including a, b, ✓, �

Output: The optimal quantization step qk for each tile k to
minimize impairment.

1: f  zeros(K,BW (t) ⇤ 100)
2: mark  zeros(K,BW (t) ⇤ 100)
3: for k = 1 : K do
4: for c = 0 : 0.01 : BW (t) do
5: temp INT MAX

6: for l = 1 : L do
7: q  (2(1/6))qpl�4

8: w[l] R(q)
9: v[l] pfov(k)MSE(q)

10: if c� w[l] � 0 then
11: ftemp  f [k � 1][100 ⇤ (c� w[l])] + v[l]
12: if ftemp < temp then
13: temp ftemp

14: mark[k][c] l

15: end if
16: end if
17: end for
18: f [k][100 ⇤ c] temp

19: end for
20: end for
21: Get qk from FindQuality()
22: return qk for each tile k

Procedure FindQuality():
1: pre BW (t) ⇤ 100
2: for k = K : �1 : 1 do
3: tilel  mark[k][pre]
4: Set the change of quantization step setting of tile k as

l(k) tilel; qk  (2(1/6))qpl(k)�4

5: Denote bandwidth needed for the tile k as bw and
calculate the new pre as pre pre� bw ⇤ 100

6: end for
7: return qk for each tile k

the total bitrate does not exceed the bitrate budget (BW (t)
for time slot t). During each iteration, the algorithm will first
iterate over all the tiles, and for each tile k, the algorithm
computes the possible degradation in its encoding impairment
(�Ik), and the possible increase in the consumed bandwidth
(�BW k), if we set its encoding quality to be one level higher
(corresponding to Line 5). Among all tiles, the algorithm will
choose the one with the highest ratio of �Ik/�BW k. Note
that the encoding impairment is calculated based on predicted
FOV probability pfov and MSE, thus a higher pfov may lead
to a higher �Ik/�BW k when parameters including MSE and
bitrate R are fixed. Therefore, for a tile with higher pfov , our
algorithm will be more likely to choose this tile in the while
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loop and assign it with high quality. Algorithm will stop when
1) there is no more bandwidth available or 2) all tiles set
encoding quality to be High. The proposed VR-PAS algorithm
has a run time of less than 70ms with a Quad-core i7 processor,
and thus can meet the real-time execution requirement of our
predictive adaptive streaming method.

- VR-OPT Algorithm

To be able to compare the performance of our proposed real
time heuristic algorithm VR-PAS, we next present a dynamic
programming based algorithm, VR-OPT, which can produce an
optimal solution for the adaptive streaming problem (Equation
2), though the latter has high runtime and hence cannot be used
in practice. The core formula for the dynamic programming
is as follow:

f [k][c] = min{f [k�1][c�w[l]]+v[l] | object l 2 group #k}

where f [k][c] denotes the minimum price for the first k groups
using cost c (condition: 0 < c  BW (t), 1  k  K, 1  l 
L), and different object l in group k corresponding to different
encoding quality for a tile. The minimum f [K][:] corresponds
to the final solution. Note that this formula requires BW (t)
for time slot t and all w[i] are integrals, assuming in our
experiments the w[i] can be as small as 0.06Mbps, then we
magnify them 100 times simultaneously to make them become
integral value. In this algorithm shown in Algorithm 2, Lines
3-20 achieve the core formula described above, which are
solving the problems by breaking it apart into a sequence
of smaller decisions. Specifically, we calculate the value of
f [k][c] for each combination of variables k and c (condition:
1  k  K, 0 < c  BW (t)), which means solving the
problem of the minimum price for first k groups using cost
c and obtaining the optimal solutions of all these smaller
decisions. Then by considering all these smaller decisions,
the algorithm gets the minimum f [K][:] as the final solution,
corresponding to the minimum impairment achieved with a
total bitrate within the bandwidth limit. Finally, in Line 21,
Procedure FindQuality is a function tracing back the selected
quantization step (i.e., selected quality) for each tile in the
optimal solution.

E. Complexity Analysis

Since this problem is a variant of knapsack problem, it is
also a NP-complete problem. Our proposed heuristic algorithm
VR-PAS has the worst-case time complexity of O(K ·K(L�
1)). The worst-case happens when the bandwidth limit equals
to or larger than the bandwidth needed for highest quality for
the whole 360-degree view. In this case, the iteration (i.e.,
Lines 2-14 of VR-PAS) will be conducted for K(L�1) times,
where one of the tiles is set one-level quality better during
each iteration and finally all tiles are set with highest quality.
As for the VR-OPT algorithm, the worst-case time complexity
is O(K ·100BW (t) ·L) due to the three nested loops in Lines
3, 4, and 6 (whose number of iterations are K, 100BW (t),
and L respectively). This algorithm can obtain optimal results
but will be much more time-consuming than VR-PAS, which
will be further discussed in the next section.

VII. EXPERIMENTAL RESULTS
In this section, we report on experiments conducted to

evaluate the performance of our proposed predictive LSTM
model, as well as our proposed predictive adaptive streaming
algorithms. We also do an end-to-end timeline analysis of our
predictive adaptive streaming approach.

A. Predictive LSTM Model
Next we present the experimental results for our predictive

LSTM model, including the experimental setup. We use 90%
of the dataset for training the LSTM viewpoint prediction
model, and 10% for testing, ensuring the test data is from
viewers which are different than those in training data. Specif-
ically, we have 32400 samples as training data and 3600
samples as test data for both medium motion and high motion
sequences in Fig. 16 and Table VI, while we take 45000
samples as training data and 5000 samples as test data for
each of three sequences in Table VII. As for the experimental
setup, we use an Intel Core i7 Quad-Core processor with 32GB
RAM and implement our approach in Python using Keras [52].
We compare the performance of our LSTM model with state-
of-the-art methods as follows:

• Stacked sparse autoencoders (SAE): We use SAE [36],
[53] with tile information during 10 timestamps as input
to predict the tile where the viewpoint is within for next
timestamp. The SAE model contains two fully-connected
layers with 100 and 80 nodes respectively for training.

• Bootstrap-aggregated decision trees (BT): Following the
work of [25], we also compare against BT using 10-
timestamp tile information as input. The BT model en-
sembles with 30 bagged decision trees, which reduces the
effects of overfitting and improves generalization.

• Weighted k-nearest neighbors (kNN): We implement a
kNN [54] using 10-timestamp tile information as input
and set 100 as the number of nearest neighbors.

Note that while the training time for BT and kNN are less than
20 minutes for the above training set for a 10-second sequence,
the training time for the deep learning models including LSTM
and SAE are up to one hour.

After training the various models with both two represen-
tations described in Section V.A, we decide on using the
one-hot encoding representation to train SAE and LSTM
models, while using the simple representation for BT and
kNN, since the simple representation works better for the latter
two approaches in our experiments.

Note in Fig. 16, Table VI and Table VII, FOV accuracy
refers to FOV prediction accuracy. We first show results of
experiments with the medium and high motion sequences of
Kong VR in Fig. 16 and Table VI. We show the FOV prediction
accuracy and pixel savings obtained when selecting different
number of tiles (i.e., the choice of m) to generate FOV.
The blue plots show the FOV prediction accuracy achieved
by each of the models for specific number of tiles (i.e., the
choice of m) selected to generate the FOV, while the green
plots show the corresponding pixel saving of the generated
FOV compared to the whole 360-degree view. Lines with
blue triangle markers, blue square markers, blue cross markers
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(b) High Motion Sequence
Fig. 16. (a)(b) show FOV prediction accuracy and pixel saving versus number of tiles selected for FOV (for two sequences in Kong VR).

TABLE VI
EXPERIMENTAL RESULTS FOR TWO SEQUENCES IN Kong VR.

Model Medium Motion Sequence High Motion Sequence
FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)

SAE 95.0 34.0 95.0 3.9
LSTM 95.5 55.7 95.0 43.7
BT 95.0 14.8 95.2 14.4
kNN 94.8 12.0 95.3 12.0

TABLE VII
EXPERIMENTAL RESULTS FOR THREE VIDEO SEQUENCES.

Model Fashion Show Whale Encounter Roller Coaster
FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%) FOV Accuracy(%) Pixel Saving(%)

SAE 95.4 52.7 95.1 46.8 95.3 29.9
LSTM 95.2 69.7 95.5 66.8 95.2 71.0
BT 95.3 19.1 95.0 18.6 95.2 48.9
kNN 94.9 12.0 95.2 10.3 95.1 21.2

and blue point markers represent FOV prediction accuracy for
SAE, LSTM, BT and kNN models respectively while lines
with green triangle markers, green square markers, green cross
markers and green point markers represent corresponding pixel
saving for these models.

From Fig. 16, we observe the following. As number of
tiles m increases, the FOV prediction accuracy continuously
increases and pixel saving simultaneously decreases. This
shows the tradeoff between FOV prediction accuracy and pixel
saving. Furthermore, we can see that our proposed LSTM
model outperforms the other three methods. For instance, in
both Fig. 16(a) and (b), the line with blue square markers
(denoting FOV prediction accuracy achieved by LSTM) is
significantly higher than the other three blue lines when the
number of selected tiles (i.e., the choice of m) is larger
than 5. We also observe that high FOV prediction accuracy
can be achieved by LSTM (and other models) with smaller
FOV and hence higher pixel savings for medium motion
sequences compared to high motion sequences. For example,
in Fig. 16(a), LSTM achieves a high FOV prediction accuracy
of 95.5% when selects 8 tiles (i.e., m = 8) to generate
FOV, leading to pixel savings of 55.7%, while in Fig. 16(b)
to achieve a comparable FOV prediction accuracy of 95.0%,
LSTM needs a larger FOV generated by 13 tiles (i.e., m = 13)
with lower pixel savings of 43.7%. Table VI summarizes the
experimental results shown in Fig. 16. When we set FOV
prediction accuracy as around 95%, we can observe that our
LSTM model achieves significantly larger pixel savings than
the other three models, achieving 55.7% and 43.7% pixel
savings for medium and high motion sequences respectively.
In our experiments, the inference time for all the models

including LSTM is less than 2ms.
We further perform more experiments on three relatively

low motion video sequences including Fashion Show, Whale
Encounter and Roller Coaster in our dataset to evaluate our
LSTM model. It corresponds to the fact that for instance in
Fashion Show sequence, viewers have similar area of interest
(e.g., the stage) and seldom change viewpoint out of this
area to other tiles. Similarly, in Roller Coaster sequence,
viewers tend to look towards front more time than other
directions when roller coaster keeps up high speed. More-
over, note that we select 10s-duration for each sequence to
keep consistency with experiments done with Kong VR. The
inference time for all the models including LSTM is still
less than 2ms. Table VII exhibits the experimental results for
the three video sequences. Our LSTM model can achieve a
very high FOV prediction accuracy of approximately 95%
with selecting 4 tiles (i.e., m = 4) to generate FOV and
corresponding pixel savings of around 70% for Fashion Show
and Roller Coaster, and choosing 5 tiles (i.e., m = 5) to
generate FOV and corresponding pixel savings of 66.8% for
Whale Encounter. Note that the above savings are significantly
higher than achieved by the other three models. Therefore, our
experimental results above demonstrate that our LSTM model
and FOV generation approach can achieve very high FOV
prediction accuracy while significantly reducing pixels needed.
In a separate work involving different VR applications, we
have shown empirically that there is a high correlation between
pixel and bitrate savings [55]. Thus, our experimental results
also illustrate the tradeoff between FOV prediction accuracy
and bandwidth savings.

While the above results demonstrate the accuracy and band-
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Fig. 17. LTE bandwidth trace (a) top, bandwidth for outdoor (b) middle,
bandwidth for indoor location I (c) bottom, bandwidth for indoor location II.

TABLE VIII
QP AND TOTAL BANDWIDTH NEEDED FOR DIFFERENT QUALITY.

Quality QP Total Bandwidth Needed

Low 30 8.64Mbps
Medium 20 28.2Mbps

High 15 57.6Mbps

width savings potential of our viewpoint prediction and FOV
generation approach, the network bandwidth available may not
be sufficient to transmit the predicted FOV, thereby necessitat-
ing the predictive adaptive streaming approach we described
in Section VI. We next describe experiments we conducted to
evaluate our proposed predictive adaptive streaming algorithm
VR-PAS, including comparison with the optimal algorithm VR-
OPT as well as a recent related work on adaptive 360-degree
video streaming.

B. Predictive Adaptive Streaming

We first collect 4G-LTE network traces by using net-
work bandwidth testing software Speedtest [56] to record
the bandwidth. Fig. 17 shows the bandwidth measured dur-
ing 180s in one outdoor location and two indoor locations
respectively (for indoor environment, we select two indoor
locations under different bandwidth conditions). We can see
the average bandwidth for outdoor location, indoor location I,
and indoor location II are 49.8Mbps, 38.7Mbps and 27.4Mbps
respectively. The bandwidth in outdoor location is relatively
largest among three locations while the bandwidth in indoor
location II is more limited than in indoor location I. Table VIII
presents the bandwidth needed for the video sequence called
Fashion Show if all tiles are encoded in different quality
(QP high, medium and low). We take it as an example to
do our experiments and similar results can be obtained for
other videos. From Table VIII, we can see that all tiles can be
encoded in high quality when bandwidth limit is larger than or
equal to 57.6Mbps. In our experiments, for each time slot (e.g.,
200ms), we consider the bandwidth value at the beginning of

the time slot in the network traces in Fig. 17(a)(b)(c) as the
ongoing bandwidth limit for the current time slot, and run our
proposed algorithm with head motion traces.

In addition, for comparison reason, we also implemented
two more algorithms as follows:

1) Adaptive streaming: We implement the adaptive stream-
ing method, which is called viewport-driven rate-
distortion optimized streaming from [42]. This method
enables the adaptive video streaming according to the
heatmaps that capture the likelihood of navigation of dif-
ferent spatial segments of a 360-degree video over time.
Specifically, during one GOP (e.g., 1s), corresponding to
30 frames, for each tile k they count the number of times
that the tile is occupied by user FOV, denoted as wk.
This technique computes the likelihoods of navigating
different tiles during the given GOP as wkP

k wk
and then

do the bitrate allocation (assign video quality) for tiles
based on these likelihoods.

2) Non-adaptive streaming: We also compare against non-
adaptive streaming method, which is the normal approach
to stream the whole 360-degree view in the same qual-
ity (e.g., low/medium/high) according to the bandwidth
condition.

Fig. 18, Fig. 19, and Fig. 20 show the results for the
three different network bandwidth traces in outdoor location,
indoor location I, and indoor location II respectively. We
employ following metrics to evaluate the performance of our
algorithm: P (QHigh) is defined as percentage of tiles in the
actual user FOV which are encoded with High quality (i.e.,
low QP), while P (QMedium) and P (QLow) are defined as
percentage of tiles in the actual user FOV which are encoded
with Medium quality (i.e., medium QP) and Low quality (i.e.,
high QP) respectively. Using 1000 head motion traces for
the video sequence called Fashion Show, we calculate the
P (QHigh), P (QMedium), P (QLow) and PSNR (Equations
11 and 12) in actual user FOV under different bandwidth
conditions. In Equations 11 and 12 [57], MSEavg represents
the average MSE of the actual user FOV while MSEH ,
MSEM , and MSEL denotes the average MSE of high,
medium, low quality tile respectively.

PSNR = 10log10
2552

MSEavg
(11)

MSEavg =P (QHigh)MSEH+

P (QMedium)MSEM + P (QLow)MSEL (12)

Fig. 18(a), Fig. 19(a), and Fig. 20(a) plot the average
P (QHigh) for all these traces while Fig. 18(b), Fig. 19(b),
and Fig. 20(b) plot the average P (QMedium) and Fig. 18(c),
Fig. 19(c), and Fig. 20(c) plot the average P (QLow). The
corresponding PSNR in the actual FOV is also illustrated in
Fig. 21 for these three locations. In each figure, we compare
the performance of the three algorithms (our proposed VR-
PAS as the predictive adaptive streaming method, adaptive
streaming method [42] and non-adaptive streaming method).
From the figures, we can make the following observations:

1) From Fig. 18 and Fig. 19, we can observe that our predic-
tive adaptive streaming achieves high average P (QHigh)
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Fig. 18. In outdoor location, average percentage of different quality view in actual FOV (a) left, predictive adaptive streaming (b) middle, adaptive streaming
(c) right, no adaption streaming.
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Fig. 19. In indoor location I, average percentage of different quality view in actual FOV (a) left, predictive adaptive streaming (b) middle, adaptive streaming
(c) right, no adaption streaming.
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Fig. 20. In indoor location II, average percentage of different quality view in actual FOV (a) left, predictive adaptive streaming (b) middle, adaptive streaming
(c) right, no adaption streaming.

(i.e., larger than 99%) in outdoor location and indoor lo-
cation I. In Fig. 20, our predictive adaptive streaming also
achieves high average P (QHigh) (i.e., larger than 80%) in
indoor location II, while both adaptive and non-adaptive
streaming produces significantly lower user experience
with P (QHigh) less than 65% and 0 respectively.

2) In all three locations, our predictive adaptive streaming
algorithm VR-PAS performs significantly better (result
in higher P (QHigh) and PSNR) compared to adaptive
streaming [33] and non-adaptive streaming. For example,
in Fig. 21(c), our predictive adaptive streaming achieves
an average PSNR more than 1dB and 4dB larger com-
pared to adaptive streaming and non-adaptive streaming
respectively.

To evaluate the bandwidth savings and thereby wireless
network capacity gain that can be achieved by VR-PAS, we
measure P (QHigh), P (QMedium), P (QLow) and PSNR of
streaming using VR-PAS, and compare with adaptive and non-
adaptive streaming. Fig. 22 and Fig. 23 illustrate the results
for different bandwidth limits (x-axes) using three algorithms.
Fig. 22 presents the P (QHigh), P (QMedium), P (QLow) under
different bandwidth limits while Fig. 23 shows the PSNR of
actual user FOV under different bandwidth limits. We provide
a summary of key observations as follows:

1) Fig. 22 shows that our predictive adaptive streaming
method has an average P (QHigh) of around 98% using
25Mbps while 57.6Mbps is the total bandwidth needed
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Fig. 21. PSNR results (a) top, bandwidth for outdoor (b) middle, bandwidth
for indoor location I (c) bottom, bandwidth for indoor location II.

for the whole 360-degree view in High quality (Ta-
ble VIII), meaning that the user can have around 98%
view in High quality with 56.6% bandwidth savings. This
shows that VR-PAS can lead to significant bandwidth
savings while ensuring very high user experience and
satisfying ultra-low latency requirement due to accurate
viewpoint prediction and advanced streaming.

2) In Fig. 23, we can observe that significantly lower band-

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 18,2020 at 00:42:49 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.2987693, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, XXXXX 2020 14

(a) Predictive Adaptive Streaming

10 20 30 40 50
Bandwidth Limit (Mbps)

0

50

100

60

80

100

Pe
rc

en
ta

ge
 (%

)

P(QHigh) P(QMedium) P(QLow)

(b) Adaptive Streaming

10 20 30 40 50
Bandwidth Limit (Mbps)

0

50

100

60

80

100

Pe
rc

en
ta

ge
 (%

)

P(QHigh) P(QMedium) P(QLow)

(c) Non-adaptive Streaming

10 20 30 40 50
Bandwidth Limit (Mbps)

0

50

100

60

80

100

Pe
rc

en
ta

ge
 (%

)

P(QHigh) P(QMedium) P(QLow)

 40  40  40

 20 20 20

Fig. 22. Percentages of different quality in actual user FOV under different fixed bandwidth limits (a) left, predictive adaptive streaming (b) middle, adaptive
streaming (c) right, no adaption streaming.
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Fig. 23. PSNR results versus the different fixed bandwidth limits.

width is needed by VR-PAS to produce the same high-
quality experience compared to adaptive and non-adaptive
streaming. For example, to achieve PSNR of 50dB in
actual user FOV, from Fig. 23, VR-PAS requires around
14Mbps while the adaptive and non-adaptive streaming
methods need around 20Mbps and 30Mbps respectively.
Thus, our proposed predictive adaptive streaming method
can provide more than 53.3% bandwidth saving compared
to normal streaming (i.e., non-adaptive streaming) to offer
the user FOV with PSNR of 50dB.
The bandwidth savings achieved by the predictive adap-
tive streaming method can enable network operators to
significantly improve capacity of their network, being
able to serve significantly more users their 360-degree/VR
video applications. For example, 2X more users can
be served a high-quality experience of 50dB PSNR,
compared to adaptive and non-adaptive techniques. This
in turn can significantly improve the economics of deliv-
ering wirelessly 360-degree/VR experiences by service
providers and/or network operators, while ensuring high
user experience including visual quality and ultra-low
latency requirements.

Next, we do a comparison for predictive adaptive streaming
algorithms VR-PAS and VR-OPT in Table IX. Similar impair-
ment I(V E) is achieved by both algorithms while our VR-
PAS algorithm can be completed within around 70ms and
VR-OPT cannot be finished in real time (e.g., runtime is
8.3s approximately when bandwidth limit is 40Mbps). This
shows that our VR-PAS algorithm is a real time algorithm and
can generate similar results compared to the optimal results
obtained by VR-OPT algorithm.
C. Timeline Analysis

In this subsection, we give an analysis of the timeline for
our proposed predictive adaptive streaming method in Table X.
Specifically, we can see that the latency for transmission from

TABLE IX
COMPARISON FOR PREDICTIVE ADAPTIVE STREAMING ALGORITHMS

VR-PAS AND VR-OPT.

Bandwidth Limit Algorithm I(VE) Runtime

10Mbps
VR-PAS 21.807 13.9ms
VR-OPT 21.807 2051ms

20Mbps
VR-PAS 7.929 27.8ms
VR-OPT 7.877 4116ms

30Mbps
VR-PAS 5.501 39.4ms
VR-OPT 5.496 6159ms

40Mbps
VR-PAS 5.224 51.3ms
VR-OPT 5.223 8294ms

50Mbps
VR-PAS 5.186 63.4ms
VR-OPT 5.186 10398ms

TABLE X
TIME NEEDED FOR DIFFERENT PROCEDURES.

Procedure Time Needed

Transmission from HMD to edge Depends on distance
Viewpoint Prediction < 2ms

Predictive Adaptive Streaming Alg. < 70ms

Transmission from edge to HMD Depends on distance
Decoding ⇡ 3ms

HMD to edge and from edge to HMD depend on distance
between them. Thus, our proposed predictive adaptive stream-
ing algorithm VR-PAS can run in real-time, with less than
70ms runtime as shown in Table IX; with added round-trip
transmission latency of under 25ms and the other delays due
to viewpoint prediction and decoding (Table X), our algorithm
can be executed in real-time about every 100ms. Since we
predict the user view 200ms in advance, we have adequate time
to send the predicted view in advance and display the needed
view for users on the HMD with no additional latency, hence
satisfying the ultra-low latency requirement of 360-degree
video and VR immersive experiences. Note that Table X does
not include the time of encoding tiles since video tiles are
known and have been encoded before streaming in the current
360-degree video streaming scenario; the time consumption of
encoding tiles will have to be added if real-time tile encoding
is needed.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a predictive adaptive streaming
approach in order to reduce the latency and bandwidth needed
to deliver 360-degree videos and cloud/edge-based VR appli-
cations, leading to better mobile VR experiences. We present a
multi-layer LSTM model which can learn general head motion
pattern and predict the future viewpoint based on past traces.
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Our method outperforms state-of-the-art methods on a real
head motion trace dataset and shows great potential to reduce
bandwidth while keeping a good user experience (i.e., high
PSNR).

Our planned future work includes performing subjective
studies to understand and quantify user experience using our
proposed predictive approach. For viewpoint prediction, we
also plan to study and develop more comprehensive models
considering (i) the type of video content to improve prediction
accuracy further, and (ii) joint head and body motion to
enable six Degrees of Freedom (6DoF) immersive experiences.
Moreover, we plan to explore in the future various tile as well
as projection options, develop further refined formulation and
algorithms for adaptive bitrate streaming, and perform more
detailed timing analysis considering real-time tile encoding.
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