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Abstract—Renewable energy (RE) is a promising solution to1

reduce grid energy consumption and carbon dioxide emissions of2

cellular networks. However, the benefit of utilizing RE is limited3

by its highly intermittent and unreliable nature, resulting in low4

savings in grid energy. To minimize the grid energy cost, we pro-5

pose to utilize data buffer of user equipments as well as energy6

storage at the base station (BS) to better adapt the BS resource7

allocation and hence its energy consumption to the dynamic8

nature of RE. We consider the scenario of downlink orthogo-9

nal frequency division multiple access networks with non-ideal10

hybrid energy supply. To jointly optimize the energy consumption11

and the quality of service (QoS) of users, we adopt the weighted12

sum of users’ utility of data rates and grid energy consumption13

as our performance metric. We propose a low-complexity online14

control scheme based on Lyapunov optimization framework.15

The proposed technique can provide asymptotically optimal16

performance bound without requiring the stochastic distribution17

information of RE arrival and channel state condition. The exper-18

imental results demonstrate the ability of the proposed approach19

to significantly improve the performance in terms of grid20

power consumption and user QoS compared with the existing21

schemes.22

Index Terms—Lyapunov methods, energy storage, solar energy,23

stochastic optimal control, mobile communication.24

I. INTRODUCTION25

THE PROLIFERATION of mobile traffic will lead to26

drastically increasing energy consumption in future27

cellular networks. The total energy consumption and car-28

bon dioxide equivalent (CO2e) emission of mobile cellular29

networks globally for 2020 has been estimated to more30

than 120TWh and 179 million tons (Mt) [2]. According31

to [3], base stations (BSs) consume 80% of the total power32

in cellular networks. Therefore, the need to reduce the33

grid power consumption of the BSs is crucial for energy-34

efficient cellular networks. There has been significant research35
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of energy-efficient BSs [4], ranging from physical layer 36

approaches involving power and spectral resource alloca- 37

tion [5], [6] and RF chain switching [7] to network level tech- 38

niques wherein active BS selection and user association [8] 39

is performed. In addition to the above techniques focusing 40

on reduction of BS energy consumption, powering BSs with 41

renewable energy (RE), which may increase BS energy con- 42

sumption while reducing grid energy consumption of BSs, is 43

a promising solution [9], [10]. Though the last few years have 44

seen tremendous growth in the use of RE in several commer- 45

cial and industrial sectors, its adoption in cellular networks has 46

been limited. The primary challenge in utilizing RE energy for 47

BSs is the highly intermittent, unreliable and variable nature 48

of RE availability across time and space, leading to mis- 49

match between RE generation and loads [11]. In this paper, we 50

will mainly focus on solar energy, however, our insights and 51

proposed approach will apply to wind and other intermittent 52

RE sources. 53

One approach to overcome the challenges of intermittency 54

and variability of RE availability is the use of high capac- 55

ity batteries [12]. However, high CAPEX of such systems 56

limits the economic viability for operators and growth of RE- 57

powered BSs. Therefore, using RE in conjunction with grid 58

energy (i.e., hybrid energy supply (HES)) is a viable approach 59

to save grid energy [13]–[17]. The other challenge is the non- 60

ideal behavior of batteries. For example, lead-acid batteries are 61

widely used in telecommunication power systems as backup 62

power supply and energy storage. From [12], the efficiency of 63

lead-acid battery depends on the charging/discharging rate and 64

state of charge and is lower than 75%. Batteries are assumed 65

to be ideal in most of the previous green communication 66

studies [13]–[16]. In this paper, we will incorporate the non- 67

ideal characteristic of batteries and propose the corresponding 68

charging and discharging decision. 69

In our preliminary work [1], we propose a RE-aware tech- 70

nique to adapt time resource of the BS and data buffers at user 71

equipments (UEs) depending on the amount of harvested RE at 72

the BS, channel condition and buffer level of UEs. We have 73

demonstrated that the technique increases the utilization of 74

RE and hence decreases the grid energy consumption without 75

requiring energy storage. However, there are two main limita- 76

tions: 1) Excessive solar energy is wasted if the harvested solar 77

energy is larger than maximum power consumption of BS or 78

data buffer of all users is full, 2) depletion of UE data buffer 79
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may limit the ability to adapt the BS resource and hence grid80

energy saving. Therefore, we propose the use of energy storage81

to complement the RE-aware BS resource allocation technique82

in this work.83

In this work, our objective is to minimize grid energy con-84

sumption of BSs as well as maximize QoS of users while85

optimally utilizing harvested solar power. The focus of the86

proposed approach will be to modulate BS energy consump-87

tion with the use of both energy storage at the BS and88

data storage of the UEs in order to mitigate the mismatch89

between harvested solar energy and BS energy consumption.90

Though the proposed approach is applicable to any application91

that utilizes data storage of users, we consider the problem for92

video download/streaming, which will play a large proportion93

of mobile traffic and hence the BS energy consumption.94

A. Related Work95

Various relevant recent work that address the use of renew-96

able energy to minimize grid energy in wireless cellular97

communication are briefly discussed below. Gong et al. [13]98

and Tutuncuoglu et al. [17] focus on a single BS-UE link99

of the HES BS and propose an optimal BS resource alloca-100

tion technique using the two-stage water filling (WF) policy101

to minimize grid energy consumption. Unlike the above tech-102

niques which consider only a point-to-point link with fixed103

transmission rate requirement, our approach adapts transmis-104

sion rate and BS resource allocation of multiple BS-UE links.105

Farooq et al. [18], [19] propose an energy cooperation scheme106

where BSs trade and transfer energy via smart grid based107

on RE availability and traffic load. However, the technique108

requires BSs to be fully connected with two-way power grid109

to transfer energy while we focus on shaping the power con-110

sumption of the BS to realize grid energy reduction. BSs with111

Non-direct energy transfer schemes are proposed to minimize112

the grid energy cost either by traffic offload [14] or cognitive113

spectrum sharing [20]. However, these approaches require fre-114

quent inter-cell coordination to adapt cell size or spectrum115

sensing while our technique is applicable to a single cell116

and do not require to change cell size. Approaches have also117

been developed for cellular networks with HES which also118

use battery storage [13]–[16]; however, the above approaches119

assume the battery to be ideal, while our work does consider120

battery imperfection and shows it to have significant impact121

in HES communication system. Tutuncuoglu et al. [17] and122

Devillers and Gündüz [21] consider non-ideal behavior of bat-123

teries with a threshold-based charging/discharging strategy, but124

their research effort focuses on cellular network throughput125

optimization instead of energy saving.126

The other key challenge of RE-powered communication127

systems design is how to efficiently utilize given channel128

side information (CSI) and energy side information (ESI).129

In conventional communication systems, BS power consump-130

tion is minimized thorough optimizing energy efficiency (as131

measured in bits/J) with given CSI. In [6], BS power con-132

sumption in multi-user OFDMA systems is proposed as133

a function of the transmission power, the signal processing134

power and the fixed circuit power to optimize system energy135

efficiency, which is ratio of the achieved sum throughput136

and the energy consumed. However, in RE-powered systems, 137

ESI should be also considered, especially when the charge 138

and discharge behavior of batteries is non-ideal. Markov 139

decision processes (MDP) are widely applied to relevant 140

online optimization problems with statistical knowledge of 141

CSI and ESI [22]. However, MDP suffers from the curse of 142

dimensionality with exponential dimension of system states. 143

Lyapunov optimization technique, which has advantages such 144

as low-complexity, computable theoretical bounds and little 145

requirement of prior statistical knowledge, was first applied 146

in RE-powered communication systems in [23]. Lyapunov 147

optimization framework is applied to solve subcarrier power 148

allocation in [24] and user association problem in [16] to min- 149

imize power consumption given CSI and ESI as stochastic 150

processes. However, they do not consider the non-ideal bat- 151

tery behavior which will significantly affect the dynamic of 152

batteries and the resulting optimal solution. Wang et al. [25] 153

maximize the network utility in multi-hop wireless networks 154

with imperfect batteries and limited RE. The above works do 155

not consider utilizing the data storage of UEs and adapting 156

the transmission accordingly, which will further enhance the 157

energy and QoS performance. 158

In this work, we focus on mobile video, which is esti- 159

mated to contribute to over two-thirds of mobile data traf- 160

fic by 2018 [26]. Hence it is critical to reduce the BS 161

energy consumption while satisfying the QoS requirements 162

of users during video download/streaming. Techniques which 163

adapt streaming quality like dynamic adaptive streaming over 164

HTTP (DASH) [27] have been studied and applied to shape the 165

download traffic. Most previous work addressing energy con- 166

sumption during video download/streaming [28], [29] focuses 167

on power saving of mobile devices by shaping the traffic 168

transmitted to users and extending the periods of no trans- 169

mission or idle periods of mobile devices, but do not address 170

reducing BS energy consumption during video download. 171

Abou-Zeid et al. [30] propose to schedule transmission given 172

the channel state predictions for wireless video download 173

and adapt the video bitrate to minimize BS energy consump- 174

tion while the use of RE and UE buffer is not considered. 175

Kwasinski and Kwasinski [31] propose to adapt compression 176

ratio of video traffic to the amount of harvested RE. However, 177

the technique requires perfect distribution information of 178

harvested RE and traffic demand of UEs. 179

B. Contributions 180

To the best of our knowledge, this is the first work uti- 181

lizing both energy storage at the BS and data storage at 182

the UEs to minimize grid power consumption of BS and 183

maximize QoS of users in a RE-aware manner. By inte- 184

grating Lyapunov optimization techniques in [23] and [32], 185

the original stochastic optimization problem is transformed 186

to a series of operations determined by solving the per-time 187

slot problem which only requires instantaneous information 188

of harvested RE and channel condition. We then develop an 189

online control scheme to solve the per-time slot problem, 190

which consists of: a) charging/discharging algorithm based 191

on current battery level, b) BS subcarrier allocation based on 192

channel condition and buffer level of UEs and battery level 193
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Fig. 1. Architecture of proposed system.

and c) buffer consumption rate based on current buffer level194

of UEs and QoS requirement. We derive a rigorous analysis to195

demonstrate that the proposed scheme is feasible for any given196

finite battery and buffer capacities and the proposed scheme197

can achieve asymptotically to the optimal solution. The rest198

of the paper is organized as follows. In Section II, the system199

model is described and the problem formulation is presented.200

We present the proposed Lyapunov-based solar power-aware201

BS resource (L-SPAR) allocation methodology and algorithm202

in Section III. In Section IV, the feasibility and performance203

bounds are derived. The performance of the proposed algo-204

rithm is evaluated via simulation in Section V. Finally, we205

conclude the paper in Section VI.206

II. SYSTEM MODEL AND PROBLEM FORMULATION207

In this section, we will first present the system model208

comprising of network, channel, traffic demand, BS energy209

consumption, energy storage and data buffer models. Then, we210

formulate the weighted sum optimization problem to address211

both grid energy consumption and QoS of users with con-212

straints of UE data buffer, energy storage and BS utilization.213

For ease of reference, we list the key notations of our system214

model in Table I.215

A. Network and Channel Model216

Consider downlink communication in a OFDMA cellular217

network system with a set of BSs B, each with subcarriers set218

K = {1, 2 . . .K}. Without loss of generality, we will consider219

one BS, b ∈ B and its associated set of users I = {1, 2 . . . I }.220

For the sake of notational brevity, henceforth, we will drop the221

subscript b from the BS related variables. Also, we will use the222

terms energy storage and battery interchangeably. Fig. 1 shows223

a single BS, with energy flows from different energy sources224

(PV panel, grid and battery), to different energy sinks (the225

BS and the battery), and data links between the BS and I226

users. Transmission time is equally divided into n time slots of227

duration λ, which is normalized to one in our paper for ease of228

analysis. We assume perfect channel state estimation including229

path loss, multi-path fading, shadowing and other factors if230

any at both the transmitters (BSs) and the receivers (UEs).231

Each subcarrier k ∈ K can only be used by one user and232

subcarrier allocation is performed at the beginning of each233

TABLE I
SUMMARY OF KEY NOTATIONS

time slot. We denote subcarrier allocation by the binary matrix 234

Xn = {xnik}i∈I,k∈K where xnik is defined as 235

xnik =

{
1, if subcarrier k is assigned to user i in nth slot
0, otherwise

236

(1) 237

Let Hn = {hnik}i∈I,k∈K be the channel gain matrix where 238

hnik is the channel gain of user i on subcarrier k. The chan- 239

nel gain hnik of each BS-UE link is assumed to be statistically 240

independent and identically distributed (i.i.d) and remains con- 241

stant during each slot. We denote Pn
k the downlink transmit 242

power allocated on each subcarrier k of the BS in the nth slot 243

and is assumed to be fixed within each time slot. Since joint 244

optimization of subcarrier and power allocation is proved to 245

be NP-hard [33] and there is no standard method for optimal 246

solution, our proposed technique only decides subcarrier allo- 247

cation Xn and it can work with any existing power allocation 248

techniques. Let rnik denote the achievable transmission rate 249

from the BS to user i on subcarrier k in the nth slot and is 250

given by 251

rnik = W log2

(
1 +

∣∣hnik
∣∣2Pn

k

σN0

)
(2) 252

where W, N0 and σ are the bandwidth of each subcarrier, noise 253

power density and the nominal spectral efficiency in (bit/s)/Hz 254

respectively. Note that rnik is clipped within [rmin , rmax ] to 255

account for practical modulation orders. Let Rn
i denote the 256

total achievable transmission rate from the BS to user i over 257

all subcarriers and is given by 258

Rn
i =

K∑
k=1

xnik r
n
ik . (3) 259

B. UE QoS Model 260

As discussed earlier, we focus on mobile video down- 261

load/streaming. Video contents can be transmitted to UEs and 262

stored at the UEs’ buffer, and then the transmission can be 263
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paused without stalling if there is enough data for playing.264

Therefore, we are interested in the data buffer level of the265

users. We define the buffer level Qn
i of user i in nth slot as266

the sum of the buffer level in n − 1th slot and the data accu-267

mulated in the buffer λRn
i subtracted by the data used for268

video playback λδni . Note that λ is assumed to be 1 in our269

case. Therefore, buffer level in the nth slot Qn
i is given by270

Qn+1
i = Qn

i + Rn
i − δni , ∀i , ∀n, (4)271

We assume Q0
i = 0, ∀i and δni is the buffer consumption rate272

satisfying273

0 ≤ δni ≤ δmax (5)274

with a finite δmax at all time. For smooth playback δni and275

Rn
i should be decided in a manner that the video buffer does276

not overflow or underflow. Hence for each user we have277

0 ≤ Qn
i ≤ Qmax

i , ∀i , ∀n, (6)278

where Qmax
i ∈ (0,∞) is the maximum number of bits that279

can be stored at user i, which may depend on the video client280

and network policy. In DASH [24], the video content is seg-281

mented into small HTTP-based files. Video segments are then282

pre-encoded in multiple versions with their “quality levels,”283

specifying specific video bit rate and resolution [27], [34].284

During video download, the streaming adaptation engine at UE285

i selects the quality level of requested video segments based on286

throughput estimation and media playout conditions [34]. The287

better QoS UEs have, the higher the buffer consumption rate.288

To provide a measure of user QoS during video download, we289

denote utility function1 Ui (δ
n
i ) for each user i. Every Ui (δ)290

is assumed to be positive, increasing, strictly concave and dif-291

ferentiable for δ ∈ [0, δmax ] [25], [35]. For convenience, we292

denote βi as the maximum first derivative of Ui (δ) according293

to the property of strictly concave functions.294

C. Base Station Power Consumption Model295

According to [5], [6], and [11], the BS power consump-296

tion can be modeled as a constant power term plus a radio297

frequency (RF) related power term. Secondly, the RF related298

power term can be modeled as a linear function of the number299

of active subcarriers. The total power consumption of the BS300

in time slot n is:301

Pn =
I∑

i=1

K∑
k=1

xnik

(
Ptx

Δ
+ Psp

)
+ P0 (7)302

where Ptx is the constant transmit power level per subcarrier303

and Δ is power amplifier efficiency. Psp denotes the signal304

processing power per subcarrier and P0 denotes fixed circuit305

power consumption of the BS such as the baseband proces-306

sor, the converter and the cooling system. Finally, the energy307

consumption of the BS in time slot n is λPn and again λ is308

omitted since λ is assumed to be 1 in our case.309

1Network utility function is first proposed by Kelly et al. [35] as a mea-
sure of user satisfaction based on data rate. Increasing, differentiable, and
concave utility functions U(·) (e.g., proportional-fair utility functions) are
widely adopted in network utility maximization (NUM) problems.

D. Energy Storage 310

Let the amount of harvested solar at the beginning of the 311

nth slot be Sn . We assume that Sn is immediately avail- 312

able for use in nth slot and takes values in some finite set Sn
313

∈ [0,Smax ] and there exists Smax < ∞. We also assume that 314

Sn is i.i.d. among different time slots. Although the i.i.d. pro- 315

cess cannot fully represent the non-linear and non-stationary 316

solar arrival, it captures the intermittent nature of solar and 317

has been widely adopted in previous studies [16], [22], [23]. 318

The BS stores the harvested solar in the battery and let 319

Emax ∈ (0,∞) denote the battery capacity. At the begin- 320

ning of the nth time slot, the transmitter harvests and stores 321

the cn units of energy. It then draws dn units of energy from 322

the battery to power the BS. We assume E0 = 0 and model 323

the battery level En as 324

En+1 = ϕEn + ηcn − dn , ∀n, (8) 325

where cn and dn are two non-negative numbers denoting the 326

amount of energy used to charge and discharge the battery in 327

the nth slot respectively. To characterize the imperfection of 328

batteries, we firstly use ϕ ∈ (0, 1) as storage efficiency. This 329

implies that during each time slot, (1−ϕ) portion of the energy 330

stored in the battery will be lost due to energy dissipation. We 331

use η ∈ (0, 1) to denote the charging efficiency of the battery. 332

When cn units of energy are used for charging, only ηcn can 333

be stored in the battery for future use and (1 − η)cn is lost 334

due to charging loss.2 335

We assume that E0 = 0 and En is constrained by energy 336

causality and limited capacity of the battery. Hence, En should 337

satisfy 338

0 ≤ En ≤ Emax , ∀n. (9) 339

As shown in Fig. 1, the grid energy consumption Gn in the 340

nth slot is given by the BS energy consumption Pn subtracted 341

the energy drawn from the battery dn and the portion of solar 342

energy Sn − cn 343

Gn = Pn − dn − Sn + cn ≥ 0, ∀n. (10) 344

Note that Gn can never be negative, i.e., there is no transfer of 345

energy back to the grid from the BS for general power grids. 346

cn is constrained by 347

0 ≤ cn ≤ Sn , ∀n, (11) 348

Therefore, dn is constrained by 349

0 ≤ dn ≤ Pn , ∀n. (12) 350

E. Problem Formulation 351

To minimize grid energy consumption while maximizing the 352

utility of users, the weighted sum of the above two objectives 353

is used as our objective. Given the solar energy Sn and the 354

channel conditions Hn , the buffer availability of each user Qn
i 355

2Practically, energy loss occurs during both charge and discharge, and the
efficiency depends on factors such as temperature, charging/discharging rate
and battery level. For simplicity, these two losses are combined into one and
the efficiency is assumed fixed in this work.
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and the battery level En , our objective is to determine subcar-356

riers allocation Xn, the buffer consumption rate δni , charging357

energy cn and discharging energy dn in each time slot to358

optimize the objective function while satisfying the buffer359

constraints of users, the battery constraint and the BS utiliza-360

tion constraint. Therefore, the optimization problem P1 can be361

formulated as362

P1: min
Xn ,δni ,cn ,dn

lim
N→+∞

1

N

N−1∑
n=0

E

[
wGGn − wI

I∑
i=1

Ui(δ
n
i )

]
363

s .t . (5), (6), (9)− (12) (13)364

I∑
i=1

xn
ik ≤ 1, ∀i , ∀n, ∀k , (14)365

Constraints (14) states that each subcarrier is exclusively366

assigned to a single user. Note that since our objective is367

to maximize aggregate utility of users, we will take negative368

terms for all Ui (δ
n
i ) in the objective function. LetwG and wI369

denote the weights of the grid energy consumption and aggre-370

gate user utility respectively. By properly adjusting wG and371

wI , solving P1 can effectively minimize grid power consump-372

tion with any QoS requirement, depending on the network373

policy.374

The problem P1 is a stochastic optimization problem. As375

shown in (6) and (9), the feasible actions set (charging,376

discharging, the buffer consumption rate and BS resource377

allocation) is confined by the current UE buffer level and378

the battery level. Also, the state transition can be described379

as a function of actions {Xn , δni , c
n , dn} and their states380

{En ,Qn
i } in the previous time slot given the probability dis-381

tribution of the solar energy Sn and the channel conditions382

Hn . Such problems can be modeled by MDP and theoretically383

solved by linear programming (LP) or dynamic program-384

ming (DP) techniques [13], [17]. However, the performance385

of such techniques depends on accurate statistical estimation386

of solar arrival and channel condition. Furthermore, the offline387

solution provided by MDP requires exponential number of388

states to characterize the system, so the process is practically389

infeasible due to computation complexity. For example, if we390

have J states of solar arrival, M states of channel gain and L391

states of buffer level for each user i and T states of battery392

levels, we need to solve the MDP problem with JM iLiT393

possible states.394

Inspired by Lyapunov optimization framework developed in395

recent works [23], [32], we will next present a low-complexity396

online L-SPAR algorithm with the following advantages:397

• The proposed algorithm provides an online solution398

requiring no prior knowledge of the probability distri-399

bution of the wireless channel or solar arrival processes.400

• The proposed algorithm minimizes objective function401

considering only the current data buffer and the energy402

storage state, which greatly reduces the complexity403

that standard MDP/LP solutions would have faced to404

solve P1.405

• Although the proposed algorithm does not result in exact406

optimal solution, the performance can achieve arbitrar-407

ily close to the optimal solution by adjusting the penalty408

parameter [23] in the Lyapunov optimization framework 409

which will be discussed in Section IV. 410

III. L-SPAR METHODOLOGY AND ALGORITHM 411

In this section, we will first describe the proposed Lyapunov 412

optimization framework and propose a per-time slot problem 413

P2. To solve P2, we then propose an online algorithm which 414

determines the BS subcarrier allocation, the amount of energy 415

charging/discharging the battery, and buffer consumption rate 416

of users. In Section IV, we will show that the proposed algo- 417

rithm provides a feasible and asymptotically optimal solution 418

for P1. 419

A. Per-Time Slot Problem and L-SPAR Algorithm 420

In constraints (6) and (9), there exists time-dependent cou- 421

pling between the state of battery and data buffer and the 422

decision of charging/discharging, BS resource allocation and 423

buffer consumption rate across time slots, which makes the 424

optimization challenging. The principle we apply Lyapunov 425

optimization here is to decouple such dependency by trans- 426

forming such constraints of the battery level En and the 427

data buffer level Qn
i into a set of virtual queues. Based on 428

Lyapunov optimization framework, the objective function in 429

P1 is defined as penalty function. By greedily minimizing 430

a weighted function of Lyapunov drift, which is the sum of 431

the squares of the current queue backlogs, and the penalty 432

function, the objective function can be optimized with the 433

long-term average constraints satisfied. Traditional Lyapunov 434

optimization can only guarantee to satisfy long-term averaged 435

constraints. To ensure deterministic bounds on all queue sizes 436

derived from (6) and (9), we use the similar method as in [32] 437

to introduce perturbation parameter θ = {θ0,θ1, . . . θI } and 438

define the virtual queues, which represent the shifted version 439

of original battery level En and data buffer level Qn
i . The 440

physical meaning of θ is the convergence value of data and 441

batteries buffer and was chosen carefully to satisfy the original 442

queue constraints 443

Ẽn = En − θ0, (15) 444

Q̃n
i = Qn

i − θi , i = 1, 2, . . . , I , (16) 445

where 446

wGV +
Pmax

ϕ
≤ θ0 ≤ wGV

η
+

Emax − Smax

ϕ
, (17) 447

wIV βi + δmax ≤ θi , i = 1, 2, . . . , I , (18) 448

where V denotes the non-negative weight parameter in 449

Lyapunov optimization where larger V will place more empha- 450

sis on penalty minimization over the queue stability. Note that 451

although the battery and the data buffer levels are always non- 452

negative according to constraints (6) and (9), the virtual queues 453

Ẽn and Q̃n
i can be negative. 454

We now define the per-time slot problem P2, which min- 455

imizes the weighted sum of the drift of virtual queues and 456

the penalty function with all constraints except (6) and (9). 457

We will later show that (6) and (9) are indeed satisfied by 458
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Algorithm 1 L-SPAR Algorithm
Initialization: Choose a pair of (θ ,V ) which satis-
fies (17)-(18).

1: At the beginning of each time slot n, obtain solar energy
Sn , virtual battery level queue Ẽn , channel gain Hn and
virtual buffer level queue Q̃n

i ∀i ∈ I.
2: Decide optimal action set {Xn∗, δni , cn∗, dn∗} by solving

P2
3: Update Ẽn and Q̃n

i according to (4), (8), (15), (16)
4: Set n = n + 1

L-SPAR in Section IV.459

P2: min
Xn ,δni ,c

n ,dn

I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik − δni

)
460

+ Ẽn
[
ηcn − dn −

(
Ẽn + θ0

)
(1− ϕ)

]
461

+ V

[
wG(Pn − Sn + cn − dn )− wI

I∑
i=1

U (δni )

]
462

(19)463

s .t . (5), (10) − (12), (14)464

After integrating and generalizing Lyapunov optimization465

framework to propose P2, we present the online L-SPAR466

algorithm. The objective of L-SPAR is to stabilize the bat-467

tery and data buffer levels around the perturbed level θ and468

meanwhile minimize the penalty function. We assume that I469

users are scheduled in each time slot and the channel state470

information and buffer level information of users are periodi-471

cally reported to the BS using Channel Quality Indicator (CQI)472

and mechanisms similar to Buffer Status Report (BSR) dur-473

ing uploading as in 3GPP specification [36]. Based on the474

above information and the amount of generated solar energy475

and the current battery level, the BS will run L-SPAR in476

every slot. In other words, given a pair of (θ ,V ) and by477

observing the current state of random processes {Sn ,Hn}478

and queues {Ẽn , Q̃n
i }, L-SPAR will determine an optimal479

action set {Xn∗, δni , cn∗, dn∗} as a solution for P2. In the next480

section, we will focus on solving the per-time slot problem.481

B. Solving the Per-Time Slot Problem482

Next, we will focus on solving P2. After rearranging P2 and483

using Eq. (8), the BS energy consumption model, the objective484

function in (19) can be written as485

min
Xn ,δni ,c

n ,dn

I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik

)
486

−
I∑

i=1

[
Q̃n
i δ

n
i + wIVU (δni )

]
487

+ wGV

I∑
i=1

K∑
k=1

xnik

(
Ptx

Δ
+ Psp

)
488

+ cn
(
ηẼn + wGV

)
− dn

(
Ẽn + wGV

)
+ C489

where C represents the constant term Ẽn (Ẽn + θ0)(1−ϕ) +490

wGV (P0 − Sn) in nth slot, which can be omitted in the491

optimization process. We will decouple the problem into three 492

parts: 1) Charge and discharge of the battery, 2) BS resource 493

allocation, 3) UE buffer consumption rate. 494

Charge and discharge of the battery: To decide cn∗ and 495

dn∗, we first solve the problem as a simple threshold-based 496

structure 497

min
cn ,dn

cn(ηẼn + wGV )− dn
(
Ẽn + wGV

)
(20) 498

s .t . (10), (11), (12). 499

Case 1: ηẼn + wGV > 0; −(Ẽn + wGV ) ≤ 0. L-SPAR 500

will discharge as much as possible and will not 501

charge. Since dn∗ has to satisfy Pn − Sn + cn − 502

dn ≥ 0 and cn∗ = 0 in this case, we have dn∗ = 503

max{Pn − Sn , 0}. 504

Case 2: ηẼn + wGV > 0; −(Ẽn + wGV ) > 0. L-SPAR 505

will neither charge nor discharge in nthslot. 506

Therefore, cn∗ = dn∗ = 0. 507

Case 3: ηẼn + wGV ≤ 0; −(Ẽn + wGV ) > 0. L-SPAR 508

will charge as much as possible and will not 509

discharge at nth slot. Since cn∗ has to satisfy 510

constraint (12), we have cn∗ = Sn and dn∗ = 0. 511

Case 4: ηẼn+wGV ≤ 0; −(Ẽn+wGV ) ≤ 0. Case 4 will 512

not happen since it contradicts with our assumption 513

0 < η < 1 and V > 0. 514

Note that if Sn > Pn + cn , in this case, the portion of har- 515

vested solar Sn −Pn −cn can not be utilized either to charge 516

the battery or power the BS and will be wasted. Furthermore, 517

when −V ≥ Ẽn ≥ −V
η , we have cn∗ = dn∗ = 0, which 518

may lead to a “static zone” where there is no further charge 519

and discharge of the battery. However, there is a (1−ϕ) por- 520

tion of the energy stored in the battery which will be lost due 521

to leakage, so the battery will not be trapped in the static zone 522

in our algorithm. 523

BS resource allocation: After solving the charge and dis- 524

charge problem as a function of Pn, we will solve the BS 525

resource allocation Xn based on the three possible cases 526

derived from the charge and discharge decision. 527

Case 1: We have cn∗ = 0 and dn∗ = max{Pn − Sn , 0}. 528

We will first solve Xn assuming dn∗ = Pn − Sn . Rewriting 529

P2 and omitting the constant terms, we want to solve 530

min
Xn

I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik

)
− Ẽn

I∑
i=1

K∑
k=1

xnik

(
Ptx

Δ
+ Psp

)
531

= min
Xn

I∑
i=1

K∑
k=1

xnik

(
Q̃n
i r

n
ik − Ẽn

(
Ptx

Δ
+ Psp

))
532

(a)⇔
K∑
k=1

min
Xn

I∑
i=1

xnik

(
Q̃n
i r

n
ik − Ẽn

(
Ptx

Δ
+ Psp

))
(21) 533

s .t . (14) 534

where (a) is because multiple subcarriers can be allocated 535

to one single user. Therefore, the minimization problem can 536

be viewed as the sum of K minimization problems in each 537

subcarrier. 538

For simplicity, we define ynik = (Q̃n
i r

n
ik− Ẽn (Ptx

Δ +Psp)). 539

To minimize the per-subcarrier problem, the solution for the 540

optimal BS resource allocation is to select one user with the 541
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minimal and negative ynik . If all ynik are non-negative on sub-542

carrier K, the BS will not allocate subcarrier K to any user.543

The optimal solution xn∗ik is given as544

xn∗ik =

{
1, if ynik ≤ min

{
0, ynk ,min

}
0, otherwise

(22)545

where ynk ,min = min
i∈I,k ′=k

ynik ′ , k = 1, 2, . . . ,K . If the resulting546

Pn∗ < Sn given xn∗ik , there is no feasible solution for dn∗ =547

Pn − Sn . We can set dn∗ = 0 and solve Xn as the same548

method in Case 2 where cn∗ = dn∗ = 0.549

Case 2 & 3: We have cn∗ = 0 and cn∗ = Sn in Case 2 and550

Case 3 respectively while dn∗ = 0 in both cases. Note that551

no matter cn∗ = 0 or cn∗ = Sn , the cn(ηẼn + wGV ) term552

in P2 remains a constant in nth slot which does not affect the553

decision of Xn . After rewriting P2 and omitting the constant554

terms, we want to solve555

min
Xn

I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik

)
−wGV

I∑
i=1

K∑
k=1

xnik

(
Ptx

Δ
+ Psp

)
556

= min
Xn

I∑
i=1

K∑
k=1

xnik

(
Q̃n
i r

n
ik + wGV

(
Ptx

Δ
+ Psp

))
(23)557

s .t . (14).558

Similar as Case 1, if we set yn
′

ik = (Q̃n
i r

n
ik+ wGV (Ptx

Δ +559

Psp)), we have the optimal solution xn∗ik given as560

xn∗ik =

{
1, if ynik

′ ≤ min
{
0, yn

′
k ,min

}
0, otherwise

(24)561

where yn
′

k ,min = min
i∈I,k ′=k

yn
′

ik ′ , k = 1, 2, . . . ,K . For each sub-562

carrier K in all three cases, the user with minimal Q̃n
i r

n
ik563

will be selected as potential candidate to serve. The physi-564

cal interpretation is that among the users whose data buffer565

levels are lower than their perturbed levels θi , the BS will566

serve the user with the largest product of achievable trans-567

mission rate and the gap to their predefined buffer level θi in568

order to fill the gap. On the other hand, if the buffer levels569

of all users are larger than θi , BS will not allocate subcar-570

riers or serve the user with smallest product of achievable571

transmission rate and excess data compared to their perturbed572

buffer level θi to avoid buffer overflow. After selecting the573

potential candidate, the algorithm compares Q̃n
i r

n
ik with either574

Ẽn (Ptx
Δ +Psp) or −wGV (Ptx

Δ +Psp), depending on whether575

the BS is powered by the battery in Case 1 or grid in Case 2 &576

3 respectively. We can observe that if Ẽn is larger (the bat-577

tery level is higher) in Case 1 or V is smaller (L-SPAR focuses578

more on stability of queues over performance) in Case 2 &579

3, the BS is more likely to allocate subcarriers to users and580

hence consumes more energy.581

UE buffer consumption rate: To obtain the optimal UE582

buffer consumption rate δni , we solve the problem583

min
δni

−
I∑

i=1

[
Q̃n
i δ

n
i + wIVU (δni )

]
(25)584

s .t . (5).585

As we prove below, the optimal solution δn∗i is given as 586

δn∗i = min{δmax,U
′−1
i

(
−Q̃n

i

wIV

)
} (26) 587

where U
′−1
i (·) is the inverse function of Ui

′(δ) and satisfies 588

U
′−1
i (Ui

′(δ)) = δ for δ ∈ [0, δmax]. 589

Proof: The minimization problem can be viewed as the 590

sum of I minimization problems for each user. The objec- 591

tive function for each user is a strictly convex function for 592

δ ∈ [0, δmax] since it is the negative sum of a linear func- 593

tion and a strictly concave function Ui (δ). Moreover, if 594

the derivative of a strictly convex function is zero at some 595

point which is δni = U
′−1
i (

−Q̃n
i

wIV
) in our case, then that 596

point is a global minimum. For Q̃n
i ≤ −wIVUi

′(δmax), 597

the optimal point δni = U
′−1
i (

−Q̃n
i

wIV
) is within [0, δmax]. For 598

Q̃n
i > −wIVUi

′(δmax), U
′−1
i (

−Q̃n
i

wIV
) is not within [0, δmax] 599

and hence not a feasible solution. Moreover, since Ui
′(δ) is 600

positive and decreasing for δ ∈ [0, δmax], the first derivative 601

of objective function −Q̃n
i − wIVUi

′(δni ) is always negative 602

for δ ∈ [0, δmax]. Therefore, the objective is a monotonically 603

decreasing function for δ ∈ [0, δmax] and thereby δmax is the 604

optimal solution. 605

In each time slot, the computational complexity of the L- 606

SPAR algorithm comes from the BS resource allocation where 607

sorting ynik or yn
′

ik of I users on each subcarrier requires 608

O(I log I ) time. The complexity of BS resource allocation 609

is then bounded by O(KI log I ) where K is the numbers of 610

subcarriers. As we described in the previous section, the com- 611

plexity is independent of the complexity of system states (e.g., 612

harvested solar energy, channel state, battery state, UE buffer 613

state) and the choice of (V , θ ). 614

IV. PERFORMANCE ANALYSIS 615

In this section, we will show that the L-SPAR algo- 616

rithm satisfies all constraints in P1 and provides a theoretical 617

performance bound of L-SPAR. Furthermore, we will discuss 618

the relation between the performance and the choice of the 619

predefined parameters (V , θ ) in L-SPAR. 620

A. Feasibility Analysis 621

In the proposed L-SPAR algorithm, the UE data buffer 622

constraint (6) and the battery capacity and energy causality 623

constraint (9) are ignored. It is important to show that for 624

given pair of (V , θ ), solving the per-time slot problem P2 625

will produce feasible solutions of P1 under the constraints (6) 626

and (9). 627

Proposition 1: Under the L-SPAR algorithm, the battery 628

level En is confined within [0,Emax]. 629

Proof: We first prove En is lower bounded by 0. Firstly, 630

we have E0 = 0 from assumption. From L-SPAR we know 631

that dn∗ = 0 when Ẽn = En − θ0 ≤ −wGV . Suppose 632

0 ≤ En ≤ θ0−wGV , we have En+1 = ϕEn +ηcn ≥ 0. On 633

the other hand, if En > θ0 − wGV , En+1 ≥ ϕEn− Sn + 634

Pn ≥ ϕEn −Pmax. Since θ0 ≥ wGV + Pmax

ϕ by constraint 635

(17), En+1 > ϕ(wGV + Pmax

ϕ − wGV )− pmax ≥ 0. 636
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Next, we will show that En is upper bounded by Emax.637

Suppose −wGV
η +θ0 ≤ En ≤ Emax, from L-SPAR we know638

the optimal cn∗ = 0. Therefore, En+1 = ϕEn − dn∗ ≤639

En ≤ Emax. Otherwise, if En < −wGV
η + θ0, En+1 ≤640

ϕEn+Smax < ϕ
(−wGV

η + θ0

)
+Smax. Since θ0 ≤ wGV

η +641

Emax−Smax

ϕ by constraint (17), En+1 ≤ Emax .642

Proposition 2: Under the L-SPAR algorithm, the buffer level643

Qn
i of user i is confined within [0,Qmax

i ].644

Proof: We first prove Qn
i is lower bounded by 0. If Qn

i ≥645

δmax, Qn+1
i ≥ Qn

i − δ ≥ 0 for any δ ∈ [0, δmax]. If 0 ≤646

Qn
i < δmax, we have Q̃n

i ≤ δmax − θi ≤ −wIVUi
′(δmax)647

from (18). Therefore, we have δn∗i = U
′−1
i (

−Q̃n
i

wIV
) according648

to (26).649

Lemma 1: Given (V , θ ) satisfying (17) and (18), we have650

Ui
′(Qn

i ) ≤ Ui
′(U

′−1
i (

−Q̃n
i

wIV
)),Qn

i ∈ [0, δmax ]651

Proof: See Appendix A.652

Since Ui (δ) is concave and differentiable for δ ∈653

[0, δmax],Qn+1
i ≥ Qn

i − δn∗i ≥ Qn
i − U

′−1
i (

−Q̃n
i

wIV
) ≥ 0654

if and only if Ui
′(Qn

i ) ≤ Ui
′(U

′−1
i (

−Q̃n
i

wIV
)), which is derived655

in Lemma 1. Therefore, with the assumption that Q0
i = 0, ∀i ,656

we can prove that Qn
i ≥ 0.657

Next, we will show that Qn
i is upper bounded by Qmax

i .658

Lemma 2: Qn
i ≤ θi +

μ
r∗ (

Ptx
Δ + Psp) + Kr∗, where r∗ =659

max
r

μ
r (

Ptx
Δ + Psp) + Kr , μ = max{Emax − θ0,−wGV },660

r ∈ [rmin , rmax ]661

Proof: See Appendix B.662

According to Lemma 2, given the size of the available663

data buffer Qmax
i , we derive the upper bound of the control664

parameter θi665

θi ≤ Qmax
i − μ

r∗ (
Ptx

Δ
+ Psp)−Kr∗∀i (27)666

where constraint Qn
i ≤ Qmax

i can be satisfied.667

The above two propositions together imply that the proposed668

per-timeslot L-SPAR algorithm with proper selection of (V , θ )669

can always yield a feasible control policy satisfying con-670

straints (6) and (9) under any arbitrary stochastic process of671

solar energy Sn and channel conditions Hn .672

B. Performance Analysis673

We will next show that L-SPAR algorithm yields an asymp-674

totically near-optimal solution. By the definition of the drift-675

plus-penalty function defined in [23], we define Lyapunov676

function as the total sum of virtual queues length677

L(n) =
1

2

[
I∑

i=1

(Q̃n
i )

2 +
(
Ẽn

)2]
. (28)678

Next, the Lyapunov drift is defined as679

Δ(n) = E[L(n + 1)− L(n)]. (29)680

The Lyapunov drift-plus-penalty function is then defined as681

ΔV (n) = Δ(n) + V

{
wGE

[
Gn]− wI

I∑
i=1

E
[
Ui

(
δni

)]}
. (30)682

Lemma 3: For arbitrary feasible decision variables 683

{Xn , δni , c
n , dn}, ΔV (n) is upper bounded by 684

ΔV (n) ≤ E

{ I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik − δni

)
685

+ Ẽn [ ηcn − dn − (Ẽn + θ0)(1− ϕ)] 686

+ V

[
wG(Pn − Sn + cn − dn ) 687

− wI

I∑
i=1

U (δni )

]}
+ C1 (31) 688

where the constant term C1 equals to 689

C1 =
max

{
(ηSmax)2, [Pmax + (1− ϕ)Emax]2

}
2

690

+ I
max

[
(Rmax)2, (δmax)2

]
2

. 691

Proof: After subtracting θ on both sides of (4) and (8), we 692

have 693

Q̃n+1
i = Q̃n

i + Rn
i − δni , (32) 694

Ẽn+1 = Ẽn + ηcn−1 − dn−1 −
(
Ẽn + θ0

)
(1− ϕ). (33) 695

By squaring both sides of (32) and (33), and summing up the 696

equalities, we have 697

Δ(n) =
1

2

[
I∑

i=1

(
Q̃n+1
i

)2
+
(
Ẽn+1

)2]
698

− 1

2

[
I∑

i=1

(
Q̃n
i

)2
+
(
Ẽn

)2]
699

=
1

2

I∑
i=1

(
K∑
k=1

xnik r
n
ik − δni

)2

700

+
1

2

[
ηcn − dn −

(
Ẽn + θ0

)
(1− ϕ)

]2
701

+

I∑
i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik − δI

)
702

+ Ẽn
[
ηcn − dn −

(
Ẽn + θ0

)
(1− ϕ)

]
703

≤
I∑

i=1

Q̃n
i

(
K∑
k=1

xnik r
n
ik − δi

)
704

+Ẽn
[
ηcn − dn −

(
Ẽn + θ0

)
(1− ϕ)

]
+ C1. 705

The inequality holds since xnik r
n
ik , δ

n
i , ηc

n and dn + (Ẽn + 706

θ0)(1−ϕ) are all non-negative. We then add the penalty func- 707

tion V [wG(Pn − Sn + cn − dn ) − wI

I∑
i=1

U (δni )] and take 708

expectation on both sides to obtain the desired result. 709

We then define an auxiliary problem P3. In P3, the 710

constraints (6) and (9) are replaced by the corresponding 711
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time-average version (36) and (37).712

P3: min
Xn ,δni ,cn ,dn

lim
N→+∞

1

N

N−1∑
n=0

E

[
wGGn − wI

I∑
i=1

Ui

(
δni

)]
713

s.t . (5), (11)− (13), (34)714

lim
N→+∞

1

N

N−1∑
n=0

E
[
Rn
i − δni

]
= 0, ∀i , (35)715

0 ≤ lim
N→+∞

1

N

N−1∑
n=0

E
[
ηcn − dn] ≤ (1− ϕ)Emax ,716

(36)717

Proposition 4: P3 is the relaxation of P1 where any feasible718

solution in P1 satisfies (35) and (36).719

Proof: By summing up both sides of (4) and (8) for n =720

1, 2, . . .N , taking the expectation, divide both sides by N and721

let N go to infinity, we have722

lim
N→+∞

E

[
QN
i

N

]
= lim

N→+∞
E

[
Q0
i

N

]
723

+ lim
N→+∞

1

N
E[Rn

i −δni ], ∀i ,724

(37)725

lim
N→+∞

(1− ϕ)

N

N∑
n=1

E[En ] = lim
N→+∞

E

[
E0

N

]
726

+ lim
N→+∞

1

N
E[ηcn − dn ].727

(38)728

Since both QN
i < ∞ and En is bounded within729

[0,Emax ], (37) and (38) are satisfied.730

Let Y opt and Ỹ opt be the optimal value of penalty function731

of P1 and P3 respectively. Y opt ≥ Ỹ opt since every feasible732

solution in P1 satisfies P3.733

Lemma 4: For arbitrary ε > 0, there exist a stationary con-734

trol policy Π = {XΠ, δΠi , c
Π, dΠ} which observes {Sn ,Hn}735

for each slot n and independently choose a control action in736

P3 and satisfies737

E

[
GnΠ −

I∑
i=1

Ui

(
δnΠi

)]
≤ Ỹ opt + ε, (39)738

∣∣∣E[RnΠ
i − δnΠi

]∣∣∣ ≤ ε, ∀i , (40)739

(1− ϕ)Emax ≥ E

[
ηcnΠ − dnΠ

]
≥ 0. (41)740

Proof: The proof is similar to [23, Th. 4.5], which is741

omitted for brevity.742

Next, we will derive the worst-case performance of L-SPAR743

algorithm with the auxiliary problem P3.744

Theorem 1: The objective function achieved by L-SPAR is745

upper-bounded by Y opt + C2
V where C2 is given by746

C2 = (1− ϕ)Emaxmax{θ0, (Emax − θ0)}+ C1.747

Note that Y opt is the optimal value of P1 under any feasible748

control algorithm, even if which relies on future knowledge749

of random process {Sn ,Hn}.750

Proof: See Appendix C.751

According to Theorem 1, the gap between the solution752

achieved by L-SPAR and the optimal solution Y opt is decided753

by C2
V , and C2 = (1 − ϕ)Emaxmax{θ0, (Emax − θ0)} + 754

max{(ηSmax)2,[Pmax+(1−ϕ)Emax]2}
2 +I

max[(Rmax)2,(δmax)2]
2 is 755

a constant with given system parameters. Therefore, we can 756

make the objective function arbitrarily close to theoretical 757

optimal solution Y opt by letting V → ∞. However, increas- 758

ing V comes with a cost of the increasing convergence level of 759

data buffer wIV βi+δmax and batteries buffer wGV + Pmax

ϕ , 760

according to equations (17) and (18). In other word, the deci- 761

sion of V is a tradeoff between the performance (in terms of 762

grid power consumption and user utility) and longer conver- 763

gence time and higher buffer requirement. By setting proper 764

values of (wG ,wI ,V ), we can adjust the priority of L-SPAR 765

algorithm to meet with different system requirements. 766

V. SIMULATION FRAMEWORK AND RESULTS 767

In this section, we will discuss the developed simulation 768

framework and results obtained by using the proposed L- 769

SPAR algorithm and compare the results with existing methods 770

during mobile video download. 771

A. Simulation Framework 772

We have developed a MATLAB based simulation frame- 773

work which consists of PV harvesting model, BS power 774

consumption model, and traffic demand model of UEs. The 775

framework allows us to implement different video download 776

techniques and evaluate the grid power consumption for tem- 777

porally varying harvested solar energy and channel conditions. 778

We will briefly describe the above models and the related 779

simulation parameters, as listed in Table II. 780

In our simulation study, we assume the harvested solar 781

energy Sn is uniformly distributed between 0 and Smax = 782

200W. To show that L-SPAR does not depend on the assump- 783

tion on the random processes and holds for non-i.i.d cases, 784

we will also include the actual solar irradiance trace in [1] 785

in performance comparison. We assume imperfect batteries 786

at the BS, with storage efficiency ϕ = 0.99, and charging 787

efficiency η = 0.8 and maximum capacity 300J. The linear 788

power consumption model elaborated in Section II is used 789

with the parameters obtained from [36]. For the network and 790

channel model, we assume the BS has 20 subcarriers with 791

equal bandwidth. The cell radius, transmit power, noise power, 792

system bandwidth and channel gain parameters recommended 793

in Long Term Evolution (LTE) specifications [37], [38] are 794

listed in Table II. We assume users are randomly distributed 795

within a 150-meter radius with the total number of concur- 796

rent users I = 10. The channel gains at each time slot are 797

exponentially distributed with mean equal to path-loss model 798

given in Table II. Different users download videos of different 799

bitrates with utility function Ui (δ) = ln(1 + δi ), We assume 800

each user has maximum buffer size of 500 MB and maximum 801

buffer consumption rate 10MB/s. For the performance metrics, 802

we assume equal weights of the grid power consumption wG 803

and aggregate user utility wI in our simulation. 804

We compare the proposed technique with two existing rele- 805

vant techniques, [15] and [24], listed below. For convenience, 806

we will refer to them as Approach 1 [15] and Approach 2 [24] 807

respectively. In Approach 1, which makes greedy decisions 808
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TABLE II
SIMULATION PARAMETERS

(a) (b)

Fig. 2. (a) left, battery level versus time (b) right, buffer level of two users
versus time.

to minimize the objective function, the UEs first choose the809

largest possible buffer consumption rate considering its avail-810

able downloaded data. Secondly, Approach 1 arranges the UEs811

in an ascending order with respect to their remaining data in812

their buffers. The BS then gives higher priority for using the813

harvested RE and only allocates the subcarrier with the best814

channel gain to the UE which buffer level is below a minimal815

level, which is the maximum buffer consumption rate δmax
816

in our simulation. In other words, the BS only allocates the817

minimum required resources (determined by the buffer con-818

sumption rate and buffer level) to the users while UEs try to819

maximize their utility. Approach 2 uses standard Lyapunov820

optimization framework while perfect batteries are assumed.821

The method is similar to L-SPAR instead of two key dif-822

ferences: 1) instead of using data buffer to halt or reduce823

data transmission, the BS allocates enough subcarriers to meet824

the required buffer consumption rate of UEs in each time slot,825

2) the optimization process does not consider the effect of826

battery imperfection.827

B. Simulation Results828

The simulation results consist of two parts: We will first829

verify the feasibility of L-SPAR algorithm by examining the830

battery level of the BS and the UE buffer level. Secondly,831

we will compare L-SPAR with the other methods using the832

weighted sum of grid energy consumption and aggregate user833

utility defined in (13) and the corresponding required battery834

and UEs’ buffer. In our simulation, the value of θ0 and θi are835

chosen as the LHS of (17) and (18) respectively, which means836

the minimum value of θ0 and θi are chosen with given V,837

the non-negative weight parameter in Lyapunov optimization 838

where larger V emphasizes more on objective minimization 839

over the queue stability. The rationale is that the larger the 840

perturbation parameter θ0 and θi , L-SPAR tends to maintain 841

unnecessarily higher battery level and buffer level of UEs. We 842

choose V = 75 and V = 150 as two examples to discuss how 843

different values of V affect the dynamics of the battery and the 844

UEs’ buffer level, as shown in Fig. 2. Note we only show the 845

first 500 seconds of the simulation since both targets converge 846

and stabilize within the first 500 seconds. 847

In Fig. 2(a), we can observe that the battery level in both 848

cases fluctuates with the maximum charge ηSmax and the 849

maximum discharge Pmax and the variation is within the 850

range between 40J and 250J. The major difference between 851

the two cases is the frequency of charging and discharging 852

in V = 75 is higher than V = 150. When V increases, 853

the gap between charging and discharging threshold also 854

increases, which makes charging and discharging less likely 855

to occur. This also implies that when V increases, L-SPAR 856

charge/discharge the battery less frequently to avoid charging 857

energy loss. In Fig. 2(b), the buffer of two users with their 858

distance to the BS equals to 100m (UE1) and 50m (UE2) are 859

shown. Firstly, we can see that since the average channel gain 860

of UE2 is better than UE1, the buffer level of UE2 converges 861

faster and the convergence level is higher than UE1. This 862

can be explained in the per-time slot problem that the larger 863

the achievable transmission rate of UE i, the more likely the 864

BS will allocate the subcarriers to UE i. Moreover, when V 865

increases to 150, convergence of the buffer of both UEs to 866

a higher level takes longer time, which is the tradeoff between 867

performance matrix and queue size in Lyapunov optimization 868

framework. As shown in Fig. 2, we can conclude that the 869

proposed L-SPAR algorithm is feasible in terms of battery 870

and data buffer. 871

In Fig. 3, we compare the performance metric, which is 872

the weighted sum of grid energy consumption and aggregate 873

user utility, between the three methods with different val- 874

ues of V. Note that Approach 1 is independent of V. We 875

can see that the weighted sum is inversely proportional to 876

V, which verifies the asymptotic optimality of Theorem 1. 877

Fig. 3(a) further shows that L-SPAR can produce consistently 878

better performance than the other two methods. For example, 879

when V = 270, L-SPAR improves the performance by 57.6% 880

and 38.8% compared with Approach 1 and Approach 2 respec- 881

tively. In Fig. 3(b) and 3(c), we compare the average grid 882

power consumption and aggregate utility of UEs respectively 883

between L-SPAR and Approach 2 (Approach 1 is omitted 884

since it is independent of V). We can see that power con- 885

sumption decreases as V increases for both methods while the 886

aggregate utility of UEs decreases. Moreover, L-SPAR consis- 887

tently consumes less power than Approach 2 with the same 888

buffer consumption rate. As an example, when V = 270, L- 889

SPAR consumes 25.5% less average power than Approach 2. 890

As shown in Fig. 3, L-SPAR effectively reduces the energy 891

consumption by 37.7% while the aggregate utility of UEs only 892

decreases by 5.9%. In the scenario with actual solar irradiance 893

trace, we assume the solar module associated with the BS uses 894

typical crystalline solar cells with 15% conversion efficiency, 895
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(a) (b) (c)

Fig. 3. Performance with uniformly distributed solar trace (a) left, weighted sum of grid power consumption and aggregate user utility vs. V, (b) center,
average grid power consumption vs. V and (c) right, aggregate utility of UEs vs. V.

(a) (b) (c)

Fig. 4. Performance with actual solar trace (a) left, weighted sum of grid power consumption and aggregate user utility vs. V, (b) center, average grid power
consumption vs. V and (c) right, aggregate utility of UEs vs. V.

and measurement of the solar power profile used in [1] for896

the simulation is from 8AM to 4PM. The performance is gen-897

erally worse for all three methods because of non-stationary898

and non-linear solar profile. However, we can observe simi-899

lar trend as the case with uniformly distributed solar power,900

as shown in Figure 4. When V = 270, L-SPAR improves the901

performance by 68.1% and 46.8% compared with Approach902

1 and Approach 2 respectively.903

In Fig. 5, we simulate the maximum battery level and904

user buffer needed for different values of V. In Fig. 5(a), the905

maximum battery level in Approach 2 approximately remains906

the same as V increases while it slightly decreases in L-907

SPAR. The observation is different from what is discussed in908

Section IV where the required batter capacity should increase909

with the increment of θ0 as V increases. The reason is that the910

maximum battery level in L-SPAR decreases as V increases911

is L-SPAR takes charging efficiency into account. In L-SPAR912

algorithm, L-SPAR will not charge if Ẽn ≥ −V
η . Applying913

θ0 = V + Pmax

ϕ as the setting in our simulation, we have the914

above threshold as En = Ẽn + θ0 ≥ η−1
η V + Pmax

ϕ . Since915

η−1
η < 0, the charging threshold in L-SPAR decrease as V916

increases, showing that the actual required battery capacity is917

less than the theoretical bound in (17). In Fig. 5(b), we can918

observe that the required buffer level of both Approach 2 and919

L-SPAR is proportional to V. This verifies the performance920

analysis and the growth of required data buffer of UEs and921

longer convergence time observed in Fig. 5(b), which becomes922

the main tradeoff to achieve better grid energy consumption 923

and aggregate user utility. 924

We will next discuss the effect of choosing different wG 925

and wI , the weights associated with grid energy consumption 926

and user utility in equation (13). Grid power consumption and 927

aggregate user utility versus wI
wG

with V = 30 and V = 270 are 928

shown in Fig. 6. As wI
wG

increases, both grid power consump- 929

tion and user utility increases because the BS tends to consume 930

more power to transmit data to UEs to increase aggregate 931

utility. Secondly, the grid power consumption grows linearly 932

while aggregate utility grows logarithmically with increas- 933

ing wI
wG

which indicates the tradeoff between grid power and 934

aggregate utility is not uniform. Thirdly, different values of 935

V result in different tradeoffs between grid power and aggre- 936

gate utility. For example, from wI
wG

= 0.5 to wI
wG

= 1.5, the 937

ratio of increased aggregate utility to increased grid power is 938

0.17 when V = 30 and 0.20 when V = 270, respectively. In 939

conclusion, the parameter set (wG ,wI ,V ) in L-SPAR can be 940

chosen to meet the data buffer constraint of UEs and arbi- 941

trary priority of grid power consumption and utility of UEs as 942

desired by a specific service provider or network operator. 943

VI. CONCLUSION 944

In this paper, we propose a renewable energy (RE)-aware 945

BS resource allocation technique which aims to better uti- 946

lize intermittent harvested renewable energy to reduce grid 947

power consumption of hybrid energy supply (HES) BSs and 948
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(a) (b)

Fig. 5. (a) left, required battery level vs. V and (b) right, average buffer
vs. V.

(a) (b)

Fig. 6. (a) left, average grid power consumption vs. wI
wG

and (b) right,

aggregate utility of UEs vs. wI
wG

.

enhance QoS of UEs. We utilize the data buffer of UEs949

together with energy storage of the BS to adapt the BS950

resource. Our technique decides optimal charging and dis-951

charging of batteries, subcarrier allocation of the BS and buffer952

consumption rate according to given CSI and ESI. Moreover,953

a realistic imperfect battery model is considered in our954

paper.955

To avoid the performance degradation due to imperfect956

prediction of CSI and ESI and reduce the computation com-957

plexity, we propose a Lyapunov optimization-based online958

algorithm in a RE-aware manner. To minimize grid energy959

consumption while maximizing utility of users, the weighted960

sum of the above two targets is used as our objective function.961

To satisfy the causality and capacity constraints of batteries962

and UEs’ buffer, we generalize the Lyapunov optimization963

technique and propose an online L-SPAR algorithm based964

on current state of energy arrival, channel condition, battery965

level and buffer level of UEs. We then prove the feasibility966

and performance bound of L-SPAR algorithm. The simula-967

tion results show that L-SPAR provides a feasible solution968

and effectively reduces grid power consumption compared to969

conventional non-RE schemes and existing Lyapunov-based970

techniques.971

Jointly solving power and subcarrier allocation in each972

time slot can enable full utilization of spatial/temporal diver-973

sity of OFDMA networks and can potentially lead to better974

optimization opportunities and hence better performance. In975

the future, we plan to explore addressing this more general-976

ized problem, while also addressing its significantly increased977

complexity. Finally, we plan to extend this research to a coop-978

erative BSs scheme to incorporate both temporal and spatial979

variation of harvested RE in multi-BSs scenario.980

APPENDIX 981

A. PROOF OF LEMMA 1 982

Since U
′−1
i (·) is the inverse function of Ui

′(δ) which sat- 983

isfies U
′−1
i (Ui

′(δ)) = δ, we have Ui
′(U

′−1
i (

θi−Qn
i

wIV
)) = 984

θi−Qn
i

wIV
≥ βi +

δmax−Qn
i

wIV
by the definition of (19). Since 985

βi ≥ Ui
′(Qn

i ) and δmax > Qn
i for Qn

i ∈ [0, δmax), 986

Ui
′(U

′−1
i (

θi−Qn
i

wIV
)) ≥ Ui

′(Qn
i ) for Qn

i ∈ [0, δmax). 987

B. PROOF OF LEMMA 2 988

Derived from data buffer dynamic equation (4), we have 989

Q̃n+1
i = Q̃n

i +

K∑
k=1

xnik r
n
ik − δni 990

≤ Q̃n
i +

K∑
k=1

xnik r
n
ik , r

n
ik ∈

[
rmin , rmax

]
. 991

The inequality comes from (5) that buffer consumption rate δni 992

is non-negative. From (22) and (24) in L-SPAR, xnik = 1 only 993

if Q̃n
i r

n
ik ≤ Ẽn (Ptx

Δ +Psp) in Case 1 or μ
rmin (

Ptx
Δ +Psp) < 994

Q̃n
i r

n
ik ≤ −wGV (Ptx

Δ +Psp) in Case 2 & 3 respectively. We 995

define μ = max{Emax − θ0,−wGV }. Therefore, we have 996

xnik =

{
1, only if Q̃n

i r
n
ik ≤ μ(Ptx

Δ + Psp)

0, otherwise
(42) 997

We then define r∗ that r∗ = max
r

μ
r (

Ptx
Δ + Psp) + Kr , r ∈ 998

[rmin , rmax ]. If Q̃n
i ≤ μ

r∗ (
Ptx
Δ + Psp) +Kr∗, Q̃n+1

i ≤ Q̃n
i . 999

On the other hand, if Q̃n
i ≤ μ

rmin (
Ptx
Δ + Psp) and together 1000

with (42), we have 1001

Q̃n+1
i ≤ max

i ′=i ,k∈K

μ

rni ′k

(
Ptx

Δ
+ Psp

)
+Krni ′k 1002

≤ μ

r∗

(
Ptx

Δ
+ Psp

)
+Kr∗ (43) 1003

After adding θi on both sides of (43), we can obtain the desired 1004

result. 1005

C. PROOF OF THEOREM 1 1006

Together with the upper bound of ΔV (n) derived from 1007

Lemma 3 and the property of L-SPAR algorithm, we have 1008

ΔV (n) ≤ E

{
I∑

i=1

Q̃n
i

(
K∑

k=1

xn∗
ik rnik − δn∗i

)
1009

+ Ẽn
[
ηcn∗ − dn∗ − (

Ẽn + θ0
)
(1− ϕ)

]
1010

+ V

[
wG(Pn − Sn + cn∗ − dn∗)− wI

I∑
i=1

U (δn∗i )

]}
1011

+ C1 ≤ E

{
I∑

i=1

Q̃n
i

(
K∑

k=1

xnΠ
ik rnik − δnΠi

)
1012

+ Ẽn
[
ηcnΠ − dnΠ − (

Ẽn + θ0
)
(1− ϕ)

]
1013

+ V

[
wG

(
Pn − Sn + cnΠ − dnΠ

)− wI

I∑
i=1

U
(
δnΠi

)]}
1014
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+ C1 = E

[
I∑

i=1

Q̃n
i

(
K∑

k=1

RnΠ
i − δnΠi

)]
1015

+ E
{
Ẽn

[
ηcnΠ − dnΠ − (

Ẽn + θ0
)
(1− ϕ)

]}
1016

+ VE

[
wGGnΠ − wI

I∑
i=1

Ui

(
δnΠi

)]
+ C11017

≤ ε

I∑
i=1

max{(Qmax
i − θi , θi}1018

+ (1− ϕ)Emaxmax{θ0, (Emax − θ0)}1019

+ V
(
Ỹ opt + ε

)
+ C11020

The first inequality is directly obtained from Lemma 3. The1021

second inequality is because the solution {X∗, δ∗i , c∗, d∗}1022

obtained from L-SPAR minimize the per-time slot problem1023

P2. Together with the facts in Proposition 1 and 2 that1024

En is bounded within [0,Emax ] and Qn
i is bounded within1025

[0,Qmax
i ] respectively, we then apply the performance bound1026

derived from Lemma 4 to give the last inequality.1027

From Lemma 4, letting ε → 0 and C2 = (1 −1028

ϕ)Emaxmax{θ0, (Emax − θ0)}+ C1, we have1029

ΔV (n) = E[L(n + 1)− L(n)]1030

+ V

{
wGE[Gn ]− wI

I∑
i=1

E[Ui (δ
n
i )]

}
1031

≤ V Ỹ opt + C2. (44)1032

We then sum up equation (44) for n = 0, 1, . . . ,N − 1 and1033

divide both sides by N to have1034

1

N
{E[L(N )]− L(0)}1035

+
1

N

N−1∑
n=0

V

{
E[Gn ]− wI

I∑
i=1

E[Ui (δ
n
i )]

}
1036

≤ V Ỹ opt + C2 ≤ VY opt + C21037

Since E[L(N )] − L(0) ≤ ∞ from Proposition 1 and 2, by1038

letting N → ∞ and divide both sides by V we have1039

lim
N→+∞

1

N

N−1∑
n=0

{wGE[Gn ]−
I∑

i=1

E[Ui (δ
n
i )]} ≤ Y opt +

C2

V
.1040
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