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Real-time machine vision applications running on resource-constrained embedded systems face challenges

for maintaining performance. An especially challenging scenario arises when multiple applications execute at

the same time, creating contention for the computational resources of the system. This contention results in

increase in inference delay of the machine vision applications, which can be unacceptable for time-critical

tasks. To address this challenge, we propose an adaptive model selection framework that mitigates the impact

of system contention and prevents unexpected increases in inference delay by trading off the application

accuracy minimally. The framework has two parts, which are performed pre-deployment and at runtime.

The pre-deployment part profiles the system for contention in a black-box manner and produces a model set

that is specifically optimized for the contention levels observed in the system. The runtime part predicts the

inference delays of each model considering the system contention and selects the best model according to

the predictions for each frame. Compared to a fixed individual model with similar accuracy, our framework

improves the performance by significantly reducing the inference delay violations against a specified threshold.

We implement our framework on the Nvidia Jetson TX2 platform and show that our approach achieves greater

than 20% reductions in delay violations over the individual baseline models.
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1 INTRODUCTION
Modern machine vision systems involve complex deep learning based algorithms [14, 19, 25, 29]

that need significant computing resources to run under reasonable time limits. However, this is very

challenging when the algorithms need to be realized in a resource-constrained system. Moreover,

in many cases, the computing system running the machine vision application shares resources

with other coexisting computing loads. For example, connected and autonomous vehicles process

camera data together with RADAR and/or LiDAR data on the same computing system for better
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fused perception in crowded areas or in the presence of obstacles [6, 15, 36]. In such scenarios,

the machine vision workload can contend with the other workloads for the computing system

resources, further increasing the application latency. While increasing the priority of certain tasks

can improve their latency, it can cause a starvation for the other tasks running on the same system.

Instead, an alternative approach is to handle contention by adapting the machine vision workload

to best utilize the computing resources available in the presence of contention. The machine vision

is thus realized by choosing an appropriate model from a set of neural network-based image

classification models, fitting the available computing resources. In this work, we examine the effects

of contention on the image classification application, and propose a contention-aware adaptive

model selection framework that minimally compromises the accuracy of the image classification

application while satisfying the latency requirements.

Several previous efforts have explored reduced complexity models that fit within the constrained

capabilities of embedded systems [20, 44]. These approaches typically involve a tradeoff between

compute/storage requirements and model accuracy. However, contention-impacted systems present

a moving target, since the contention levels may vary over time, effectively presenting different

resource levels that we would like to fully utilize in order to achieve the lowest impact on application

accuracy. Thus, the major challenges in a real-time system with contention are (i) to accurately

predict the level of contention in the system, and (ii) adapt the application accordingly maintaining

the performance constraint of the application. As many modern systems may not allow applications

to access low-level system information in real-time due to security concerns or complexity of the

platform, herein, we infer the level of contention from its impact on the application performance.

We propose an application-level data-driven predictive framework for contention-aware adaptive

model selection that aims to minimize the cost of system resources and overhead of our framework,

while maintaining system performance stability in presence of dynamic workload variations.

Now, as the model selection framework needs to load a number of pre-trained models in memory

and dynamically select a model at runtime, the length of the model set can not only impact the

memory overhead but also the model switching cost and stability. Hence, we also propose a

contention grading mechanism that intelligently selects the appropriate deep learning models in

the model-set used by the adaptive model selection framework.

The main contributions of this work are as follows:

• An application-level profiler for system contention and a methodology to automatically

regenerate the profiled system contention in a controlled environment.

• An offline model set pruning methodology that selects the optimal models for a given system

contention profile and specific user requirements.

• A runtime model selection mechanism for an image classification application that adapts

based on the system contention to stay below a predefined delay threshold.

We implement the framework on the Nvidia Jetson TX2 platform and show the advantage of

our adaptive model selection framework in dynamic contention scenarios. We empirically show

that our model pruning methodology improves the runtime model selection performance resulting

in better tradeoff between latency and accuracy, and also reduction in memory overhead. The

framework also shows the advantage of model selection from a set of independently trained models

compared to early exit techniques [33, 35].

2 RELATEDWORK
The challenge of enabling deep learning models on resource constrained devices has been exten-

sively researched in previous efforts. One of the main techniques is designing ground-up efficient

models that require less resources than high accuracy models while sacrificing accuracy as little as
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possible [13, 27, 34, 43]. In [13], a squeeze-and-expand architecture is created by using 1x1 and 3x3

filters together. In [43], a channel shuffling operation is created after 1x1 group convolutions. In [27],

linear bottlenecks and inverted residuals are used together with depthwise convolutions. In [34],

the DenseNet architecture [12] is modified to design an efficient deep neural network. Unlike our

framework, these approaches create a single efficient model and do not consider dynamic changes

in computing resources available due to contention in the system. In the presence of contention,

their inference delays will still increase unexpectedly. Similarly, when there is no contention, they

miss the opportunity to use the available resources for higher accuracy since the design is fixed.

These efforts are orthogonal to our work, and our proposed approach and framework will apply to

all neural network models, including these compute-efficient models as well.

Another way of creating efficient deep learning models is to use quantization to come up with

efficient designs out of any neural network model. Quantization decreases the precision of neural

network weights and activations to improve efficiency. There are several efforts addressing neural

network quantization in the literature [8]. Quantization can be considered in two categories, namely

quantization-aware training [3, 23, 30, 44] and post-training quantization [1, 21]. Quantization

is applied during training in the quantization-aware training methods. In [3], the weights and

activations are constrained to -1 and +1. In [44], quantization clusters are learned during training

together with weights. In [23], the weights and activations are quantized to binary values to allow

XNOR and bitcount implementation of expensive operations. In [30], quantization is designed for

graph neural networks. Quantization is applied after training in post quantization methods. In [1],

3 post training techniques are defined and their combinations are used for 4-bit quantization. In

[21], the weights in different layers of a neural network are scaled to decrease the error caused by

quantization. These approaches do not consider contention either. Therefore, their inference delays

are vulnerable to dynamic system contention as well.

Pruning is another method that is similar to quantization in terms of its objectives and design flow.

The less important weights of neural networks are pruned to create efficient neural network models.

Pruning methods can be categorized into two main methods, namely unstructured and structured

pruning [2]. Unstructured pruning removes individual parameters or neurons [9]. Structured

pruning removes the coarse-grained structures such as filters or channels [20]. The effect of

contention on pruning methods is similar to the quantization. They do not consider contention

and their inference delays can be affected by contention.

All the previous related work is focused on creating one fixed efficient design with minimal

accuracy loss. However, multiple models can be used to find a balance point between efficiency and

accuracy. Real-time model selection is previously investigated in literature for different scenarios.

In [32], the authors measure the input image’s complexity before classification and select the ideal

model for the specific input image content. In [22], two models are employed, one big and one little.

Each image is classified by the little model first. Then, if the classification is found unsuccessful, big

model classifies the same image again. However, the unsuccessful attempts in this method increase

the latency, and hence, are not suitable for real-time machine vision system. In [5], a CNN based

multiplexer is trained to select the optimal deep learning model for the given input image. The

multiplexer considers the input image’s complexity. In [7], the optimal model in a model set is

selected or the current model is adapted when a class skew is detected in the input. The model set

is prepared by pruning models by considering class skew. The aforementioned methods do not

take the contention of the underlying computing system into account for model selection. In [42],

a model switching methodology is developed to improve the performance for cloud servers which

do not have strict delay constraints like embedded systems. In this work fluctuating workloads are

considered as contention in the server environment.
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Using early exit models can be an alternative to model switching. Defining early exit points

in a neural network creates incremental sub-models where a latency-accuracy tradeoff occurs

between these early exit points. In [33], this methodology is applied on multiple neural networks

and latency-accuracy tradeoff is demonstrated. In [41], a methodology is proposed to convert

any CNN to a multistage model. The stages of this multistage model are selected at runtime. In

[35], an early exit model is designed to be used during runtime. The input and the contention are

considered to select an approximate branch of the predefined early exit model. The contention is

determined by matching previous inference delays of approximate branches and a look-up table

that consists of benchmarks of each approximate branch. The runtime part of our work is different

in two aspects. First, instead of approximate branches, we use multiple models that are specifically

tuned to provide different accuracy-compute tradeoffs, e.g., selected from existing resource-efficient

deep learning model designs. This results in a better efficiency-accuracy tradeoff. Second, our

contention measurement is embedded in regression models instead of look-up tables. Also, our

delay normalization mechanism allows us to use different models’ inference delay to measure

contention. This can be useful when contention and therefore model selection change rapidly. In

Section 5.5, we provide results demonstrating the advantages of our approach over early exit based

technique [35].

Slimmable neural networks [40] are dynamic neural networks like early exit models. Slimming

operation scales the model width by changing the number of channels in each layer. Therefore,

slimming creates sub-models as well where a latency-accuracy tradeoff occurs between switches.

In [39], slimmable networks are improved to be able to use arbitrary widths instead of predefined

widths. In [38], a width search strategy is proposed for the number of channels instead of using

predefined or arbitrary widths. Even though slimmable networks are not experimented with

switching when contention exists, it is possible to use them in that way. Therefore, we compared

our methodology with slimmable neural networks in Section 5.6.

In our previous work [17], we examined runtime model selection in the presence of contention.

However, this work was assuming the contention levels are known beforehand and expecting a

model set that is already tailored for the contention levels. In this work, we extended our previous

work by adding an application level profiler to determine the contention levels and adding a model

set pruning methodology to find optimal model set for the existing contention levels from a given

large number of models.

3 OVERVIEW OF OUR APPROACH
3.1 Machine Vision Application
In this paper, we consider machine vision applications, specifically focusing on the image clas-

sification block within them. There are two main metrics that define the performance of image

classification applications - inference delay and accuracy. In any machine vision system, it is

desirable to minimize the inference delay and maximize the accuracy of the image classification

task.

The presence of multiple, concurrently executing tasks in a computing system causes contention

for the specific system resources, eventually resulting in increased delay for the completion of

the tasks. These contentions and their impact are seen more frequently in resource-constrained

embedded systems. For demonstration of contention and its impact, we consider sensor fusion in

autonomous vehicles.

Sensor Fusion and Contention in Autonomous Vehicles: Autonomous vehicles operate in a

complex environment and therefore require a high level of perception that is achieved by using

multiple sensors and their fusion. Autonomous cars have three main sensors - Camera, LiDAR, and
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Fig. 1. Inference delays of different models under changing contention

RADAR. The fusion of these sensors can achieve better accuracy than using each sensor individually.

However, this performance improvement comes with a cost since using more sensors requires more

computation power. Further, the processing of each sensory modality results in contention, whose

effects are especially significant in resource-constrained settings.

There are different fusion approaches as reviewed in [36]. This work categorizes fusion ap-

proaches into three levels, high-level [15], mid-level [18], and low-level [37]. All of these fusion

approaches incur a processing cost in addition to sensors’ individual processing costs. The com-

putation for the fusion task is also affected by the system contention as well as contributing to

it.

3.2 Delay Accuracy Trade-off
The trade-off between inference delay and accuracy is fundamental to image classification systems

as more complex image classification algorithms result in higher accuracy but also require more

time to compute those results. Since contention creates dynamic variations in the available compute

resources, a machine vision system needs to optimize its performance in terms of delay and accuracy.

Typical autonomous systems need to satisfy a delay constraint (e.g., operate under a certain frame

rate), while maximizing accuracy. In order to achieve this objective, we propose to use a set of 𝑁

image classification models {𝑀𝑖 }, 𝑖 = 1, .., 𝑁 with increasing complexity. Depending on the available

resources in presence of contention, the system must choose the optimal model. For example, the

inference delays of four different EfficientNet [31] models under varying contention are shown in

Figure 1. The contention is created by multiple radar instances running on the same computing

platform. The contention level graph at the bottom of Figure 1 shows varying contention levels.

Each model’s inference delay increases proportionally under increasing contention. Figure 1 shows

that if we have an inference delay constraint, we can satisfy it by choosing an appropriate model

for each contention level. For example, all of the models satisfy the delay threshold around frame

500 since the contention level is low. Therefore, the most complex model can be chosen at this

contention level. However, the contention level is very high around frame 1000. EfficientNetB6 and

EfficientNetB4 do not satisfy the delay threshold at this contention level. Therefore, the third most

complex model, EfficientNetB2, should be chosen at this contention level. Choosing the simpler

model satisfies the delay threshold, however it also results in accuracy loss.

3.3 Adaptive Model Selection At Runtime
For selection of an appropriate model, one needs to have a priori knowledge about the contention

level in the system when the model will be executed, and select the best model that fits in the
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available resources. Since it is not possible to know future contention levels precisely, one can

estimate the contention level based on recent history, project the impact of contention on different

image classification models, and select the best model for the next image frame.

The proposed framework predicts the future inference delays of the model set {𝑀𝑖 } in the

presence of contention. Then, we find a subset of models {𝑀 𝑗 |𝐷 𝑗 < 𝑇 }, 𝑗 = 1, .., 𝐿, 𝐿 ≤ 𝑁 , where

𝐷 𝑗 is the predicted inference delay of model 𝑀 𝑗 , 𝑇 is a latency threshold of the system and 𝑁 is

the total number of models in the model set during runtime. After that, we choose the appropriate

model𝑀𝑘 such that the accuracy 𝐴𝑘 = max{𝐴 𝑗 }.

3.4 Contention Grading and Defining Model Set
The adaptive model selection framework works at runtime and requires a set of models to be defined

before runtime. Defining the model set is the other side of this problem and imposes an important

challenge. The optimal model set differs based on the aim of the models, the system contention

levels and the user requirements. There are usually a very large number of models available across

the entire latency-accuracy tradeoff space. Having a large number of models to choose from can lead

to the runtime framework incurring excessive overheads and/or switching models more frequently

than needed. Thus, it is important to define a model set that is minimal in size, while still
offering sufficient options to adapt to the observed contention levels. The optimality of a

model set depends on satisfying the inference delay constraint while maximizing accuracy using

minimum memory.

We find the optimal model set by measuring system contention and pruning a given model

set based on the effects of contention in the system. In order to measure system contention, we

profile the system using a specifically designed profiler. Then, we regenerate the system contention

in a controlled environment to prune our model set. We have 3 pruning stages where we use

independent notations in the following paragraphs. In the first stage, we remove Pareto-inferior

models in the model set. Given a model set {𝑀𝑖 }, 𝑖 = 1, .., 𝑁 where 𝑁 is the number of models, for

each model𝑀𝑘 , we find the subset of {𝑀𝑖 } as𝑀𝑘𝑡 = {𝑀 𝑗 |𝐷 𝑗 ≤ 𝐷𝑘 } where 𝐷 𝑗 is the inference delay

of model 𝑀 𝑗 . Then, let the 𝐴𝑘𝑡 be the accuracy set of the model set 𝑀𝑘𝑡 . If𝑚𝑎𝑥 (𝐴𝑘𝑡 ) ≠ 𝐴𝑘 , then

we prune𝑀𝑘 from {𝑀𝑖 }. In the second stage, we remove models that have small gains compared

to their adjacent models. These models have small gains with high cost where the cost includes

inference delay and memory consumption. Given a model set {𝑀𝑖 }, 𝑖 = 1, .., 𝑁 ′
, where all models

are on Pareto frontier and 𝑁 ′
is the number of models, we find the slopes of each adjacent model

pair as 𝑆 𝑗 =
𝐴 𝑗+1 −𝐴 𝑗

𝐷 𝑗+1 − 𝐷 𝑗

where 𝐴 𝑗 is the accuracy and 𝐷 𝑗 is the inference delay for𝑀 𝑗 . Then given a

lower (𝐿𝑙 ) and higher (𝐿ℎ) limits for the slopes, we prune the model𝑀 𝑗 if 𝑆 𝑗 > 𝐿ℎ or𝑀 𝑗+1 if 𝑆 𝑗 < 𝐿𝑙 .

Whenever a pruning occurs, we recalculate all of the slopes and restart pruning. In the last stage,

we remove the models that have no use in the contention levels of the system. In this step, the user

requirements and the system contention levels are considered. Given a model set {𝑀𝑖 }, 𝑖 = 1, .., 𝑁 ′′

where 𝑁 ′′
is the number of models, Contention levels {𝐶 𝑗 }, 𝑗 = 1, .., 𝑃 where 𝑃 is the number of

contention levels and the inference delay threshold T, we run the all models on each contention

level to find inference delays {𝐷𝑖 𝑗 }. Then we find the most accurate model 𝑀𝑘 that satisfies the

delay threshold for each contention level j such that 𝐴𝑘 =𝑚𝑎𝑥 (𝐴𝑖 |𝐷𝑖 𝑗 < 𝑇 ). Then we add 𝑀𝑘 to

the valid model set and prune the rest of the models.

4 CONTENTION GRADING, MODEL SET GENERATION AND ADAPTIVE MODEL
SELECTION: DETAILS

Our system consists of offline contention grading and model set pruning, followed by a runtime

adaptive model selection. We discuss the details of each of these phases in this section.
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4.1 Contention Grading
Contention grading and model set pruning comprises of three components. The first component

is profiling system contention on the target system during runtime. The second component is

mimicking the profiled system contention for detailed analysis of the model set. The last component

is model set pruning, which outputs the optimal subset of the input model set.

4.1.1 Profiling System Contention.

Profiling the contention in a system can be a very complex task because of two main problems.

The first one is - P1: the contention is created by overlapping execution of many different tasks.

Therefore, the combination of these different tasks creates unpredictable contention levels. The

second one is - P2: the difficulty of detecting the contention point. There are many modules (CPU,

GPU, memory, bus etc.) in a computer system which can be requested by the tasks at the same

time, resulting in a contention in these modules.

As a result of complex contention scenarios, instead of profiling the system contention, we

decided to profile the impact of the contention to our application. In order to do that, we run a

sample of our application along with all other tasks and measure the performance of our application.

For example, since our application is a neural network based one, we run a sample neural network

on the system and measure its inference delays to understand different levels of contention that

are important to neural network based applications. We named this profiler as Contention Impact

Profiler (CIP). CIP should be run on the system for long enough to observe all contention levels.

Using CIP solves the first problem (P1) because we observe the effect of contention and see the

root of contention as a black box which can be a single task or multiple of them. This method also

ignores the contention that has no effect on our application and therefore simplifies the contention

profiling. Using CIP solves the second problem (P2) of contention profiling since it does not try to

identify the contention point.

The CIP is needed for our framework for two aspects. The first one is the need of knowing the

specific contention levels in a system and regenerating them in a controlled offline environment.

These known and controlled contention levels are required and used in our model set pruning

methodology. If we do not have these known and controlled contention levels, we cannot prune

a model set for the target system with contention. The second one is the requirement for the

generalization. Themodel set pruning is designed to work for any system and requirement. However,

it requires system and contention specific information for each case. Measuring such information

for each system would require a significant amount of effort and would decrease the value of our

framework. The CIP covers this aspect by working as a black box in any system and collecting the

required system and contention specific information by model set pruning stage.

4.1.2 Mimicking Contention.

Once we know the levels of contention, we mimic this contention in a controlled environment

for the purpose of selecting a model set. We propose the use of Artificial Contention Units (ACUs)

for this purpose. An ACU is a dummy workload used for the purpose of producing a specific level

of contention. Different numbers of ACUs are used to generate different levels of contention. An

ACU is composed of dummy instructions including vector addition, vector multiplication and FFT

operations. These operations are big and diverse enough to create contention and small enough to

give us a fine grained control over contention creation when multiple of them are used.

We use the same CIP that is used to profile the system contention, to profile contention syn-

thetically created by ACUs. During this profiling, we increase the number of ACUs incrementally

and measure the inference delays of the CIP. This creates an inference delay trace of the CIP
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Fig. 2. Pareto-optimal and Pareto-
inferior of a hypothetical model
set

Fig. 3. Hypothetical model set be-
fore transition pruning

Fig. 4. Hypothetical model set be-
fore contention pruning

under increasing ACU contention in addition to the inference delay trace of the CIP under system

contention as we obtained in 4.1.1. Note that both traces are measured on the same hardware by

the same CIP.

At this point, we get back to the inference delay trace of the CIP under system contention and

do some preprocessing. First, we take the moving average of the trace to remove noise. Then,

we apply kernel density estimation to data to find the contention levels. In the end, we have the

number and intensity of the contention levels in the system. At the last step, we match the system

contention levels and ACU contention levels with same intensity. As a result, we have the set of

ACU contention levels that can regenerate the system contention. Since we have a complete control

over using ACUs, we systematically use them to measure the performance of all of our models and

prune our model set.

4.1.3 Model Set Pruning.

The aim of contention grading is to prune the model set and propose an optimal subset. Profiling

system contention and mimicking it are done to enable model set pruning. Subsequently, we prune

the model set in three stages, which are described below.

Pareto Pruning
Pareto pruning is the first pruning stage. In this stage, we remove the models that are not on the

accuracy-inference delay Pareto frontier of the model set. This is because the models that are not

on the Pareto frontier should not be used in any application. If a model is not on the Pareto frontier,

there is at least one other model in the model set that performs better with less cost. So, the models

that are not on the Pareto frontier are either obsolete or poorly designed for the image classification

task at hand. Pareto-optimal and Pareto-inferior models of a hypothetical model set are shown in

Figure 2.

To construct the accuracy-inference delay, we use the average inference delay over all the

contention levels of the system in this stage. This enables us to consider the overall response

of models to system contention. If a model is on the Pareto frontier without contention, but the

inference delay of the model increases more than other models in the presence of contention, then

this model may lose its position on the Pareto frontier.

At the end of this stage, we have a model subset where each model presents a unique tradeoff

between accuracy and inference delay.

Transition Pruning
Pareto pruning creates a model subset where each model shows a non-zero improvement in one

metric with respect to models adjacent to it in the Pareto frontier. However, some of those models

might not be beneficial in practice. This is because Pareto optimality considers any gain without
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evaluating the actual magnitude of the gain. There can be a very small gain with very high cost or

a very high gain with very small cost, leading to models that do not get used in practice.

In our case, the gain is accuracy and the cost is inference delay or memory consumption. We use

inference delay as our cost for our pruning calculations. However, since the inference delay and

memory consumption are usually correlated (since both depend on the number of parameters in

the model), our pruning in this stage improves memory consumption as well.

A hypothetical model set is shown in Figure 3. All models are Pareto optimal in this model set.

However, two minimally useful transitions can be noticed. These transitions are - model 1 to model

2, and model 4 to model 5. First, let’s consider the transition model 1 to model 2. There is a very

high accuracy improvement from model 1 to model 2. However, their inference delays are almost

the same. Therefore, the model 1 can be dropped from the model set. The second transition has a

similar problem but in the opposite direction. There is a very small accuracy improvement from

model 4 to model 5. However, model 5 requires significantly larger time to achieve this accuracy.

Therefore, model 5 is not useful in this model set. Removing these models from the model set does

not only simplify the model set but also improves the performance of adaptive model selection by

eliminating the use of these models, and hence the associated overheads, at runtime.

When the given example is examined, a certain pattern can be noticed when there is an inefficient

transition. This pattern is the slope of the transition. If the slope is too low or too high, it is an

inefficient transition. We therefore use the slope to identify inefficient transitions and eliminate

them. The lower and higher threshold of the slope can change depending on the problem and user

requirements. Therefore, these values are hyperparameters in our methodology.

Contention Pruning
In this final stage of pruning, the model set is pruned considering specific contention levels and

user requirements. Our pre-deployment profiler (CIP) gives the specific contention levels that can

be observed in the system. The number of different contention levels is important because it also

limits the number of models in the model set. Given a contention level, there can be only one

best model, because only one model has the maximum accuracy among the models that satisfy

the inference delay threshold (user requirement) at a specific contention level. Note that the vice

versa is not true - one model can be the best model for multiple contention levels. As a result, we

can say that the total number of models must be less than or equal to the total number of
contention levels and we consider this rule in the contention pruning stage.

Before explaining this stage of pruning, note that Pareto pruning creates a model set where

accuracies and inference costs vary monotonically. Therefore, if a model has a higher inference

delay than another model, it is also more accurate than the other model. This property is used to

define the more accurate model by looking at the inference delay in contention pruning stage.

Before contention pruning, we need to run all of our models under the contention levels that

we found in the previous steps. We use ACUs to mimic the system contention, run each model

under each contention level and save the average inference delays. The output of this part can be

observed in Figure 4 where a hypothetical model set is used for explanation purposes. In the figure,

there is an inference delay threshold which is shown as a black line. This is the user requirement

which basically defines the maximum acceptable inference delay. Therefore, we want our models to

perform under this threshold while being as much as accurate. The x-axis of the figure shows the

contention level. The increasing contention levels and the models’ responses are shown from left

to right. In each contention level, we find the model that is just below the inference delay threshold

and mark it as valid model. In the end, any model that is not in the valid list is pruned. The valid

model in each contention level is shown with a red circle around it.
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Fig. 5. Overview of the proposed framework

When we examine the pruned models, we can see that they are not suitable for the user re-

quirement and contention profile of the system. For example, model 6 requires too much time

and is not suitable even in smallest contention level. The model 0, on the other hand, is always

below the inference delay threshold. However, the contention never increases up to a point where

using model 0 is the optimal choice. Another pruned model is the model 3. Model 3 is below the

threshold in some contention levels and above it in some other contention levels. So, it is expected

that model 3 should be optimal at one contention level. However, as we can see from this example,

the contention does not have to increase gradually at every level. A system may experience a jump

in contention which eliminates the need for middle level models. We also notice that model 4 is the

optimal choice for two contention levels. This can happen when some contention levels are close

to each other.

In the end, 3 models are pruned in our hypothetical example. This leaves our model set with 4

models (model 1, 2, 4, and 5) which is smaller than the number of measured contention levels (5).

Figure 5 shows our proposed end-to-end framework, the top part of which shows the components

involved in contention grading and model-set pruning. As the figure indicates, this phase is done

before the runtime model selection starts at 𝑡 = 0 when the pruned model set is forwarded to the

predictive model selection framework.

4.2 Runtime Model Selection
The overview of the proposed predictive model selection framework is shown in the lower part of

the Figure 5. The framework employs a set of image classification models provided by the contention

grading and model set pruning component. The framework chooses the optimal model for the next

frame’s classification while considering the current contention on the system. The optimal model

is determined by using historical information and a set of linear regression models. The historical

information comes from the previous frames’ normalized inference delays. There is one regression

model for each image classification model used in the framework. The regression models are

trained before runtime using their corresponding image classification models on randomly changing
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(a) Inference delays (b) Normalized inference delays

Fig. 6. Inference delays under increasing contention and normalization

contention level. All regression models take the same input, the previous normalized inference

delays, and output the predicted inference delay for their corresponding image classification model.

Then, the framework chooses the most appropriate model based on the delay threshold constraint

and maximum accuracy as mentioned earlier.

Delay Normalization
Figure 6a shows the inference delays for EfficientNet-B0, B2, B4 and B6 [31] under increasing

contention. It shows that the inference delay values depend on two things - the system level

contention, and the image classification model type. Since our framework uses historical inference

delay values to represent the impact of contention, we remove the model type dependency by

normalization shown in Equation 1. In this equation, 𝑥 is one inference delay of a model and 𝑋 is

a vector that consists of all inference delays of the same model. If we consider EfficientNetB6 in

Figure 6a, 𝑥 is one red dot and 𝑋 is the vector of all red dots.

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 −𝑚𝑖𝑛(𝑋 )
𝑠𝑞𝑟𝑡 (𝑣𝑎𝑟 (𝑋 )) (1)

The result of normalization is shown in Figure 6b. The minimum and variance values for each

model is saved before runtime and used to normalize the inference delays of the models during

runtime.

Prediction and Selection
The training data is created by running each model under randomly changing contention levels. As

input, the normalized data is split into chunks of n consecutive normalized inference delays. All

of the regression models take the same input as they will be predicting in parallel using the same

input. As prediction output, non-normalized delays are used. Each regression model has different

output corresponding to its image classification model. Hence, each regression model takes same

input, n previous normalized inference delays, and predicts its corresponding image classification

model’s inference time for the next frame. After this step, the framework has a predicted inference

delay for each image classification model. The image classification models are already ranked in

terms of accuracy on static datasets before runtime. Therefore, the framework chooses the model

which has the highest rank and also a predicted inference delay under the predefined threshold.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
We implemented the proposed framework on the Nvidia Jetson TX2 platform. We used Tensorflow

to train deep learning models that are used in Section 5.5. We used built-in image classification

models of Tensorflow for the rest of the experiments. These built-in models are EfficientNets

[31], ResNetV2 [10], InceptionV3 [29], DenseNets [12], MobileNetV1 [11], MobileNetV2 [27], and
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Fig. 7. Inference delays of CIP under system contention

NasNets [45]. These built-in models come with pre-trained weights on the ImageNet dataset [26].

Since the validation set of ImageNet is available for hyper-parameter tuning, we decided to use the

ImageNetV2 dataset [24] for our test set. Therefore, all of the reported test results in this section are

using ImageNetV2 dataset. Also, we resized images using the bi-linear method without cropping

before inference for all of the models. We standardized the test set and resizing-cropping technique

to make a fair comparison. Therefore, the reported accuracies may be different from the original

ImageNet validation set accuracies that are reported in the original papers of the models. Since we

focus on the relative accuracies, this is not an issue for our experiments. When we trained custom

models, we used the original ImageNet dataset.

5.2 Contention Grading and Model Set Pruning Evaluation
We consider contention scenarios imposed by multiple autonomous vehicle applications includ-

ing RADAR processing (FFT based), LiDAR processing (Deep neural network based) and sensor

fusion (clustering based). We run the deep neural network based image classification application

concurrently with these other applications on the target system. These coexisting applications

create different contention patterns in the system, e.g., the radar processes and sensor fusion run

on the CPU while the LiDAR processes run on the GPU, thus creating contentions with the parts

of the image classification algorithm sharing those system resources.

5.2.1 Contention Grading Evaluation.

System Profiling with CIP:
We generate a random number of threads for each of our contending applications. Then we use the

CIP to profile this system. In the core of the CIP, we used an application based on EfficientNetB2

image classification model and measured its inference delays to profile the impact of the contention

on the system. The inference delays of the CIP and the number of threads of applications creating

contention are presented in Figure 7. Note that, the information about applications that create

contention is not used by the CIP. We only provide the number of threads of contention applications
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Fig. 8. Inference delays of CIP under increasing ACU
contention

Fig. 9. Kernel density estimation of the system pro-
file

for better understanding of CIP behavior. We generated 15 contention combinations by changing

the number of threads of each contention application. 12 of them are unique combinations. In any

system, same combination of threads can repeat over time or different combinations of threads can

result in the same contention level. We can see examples of both of these scenarios in our system

profile.

Mimicking Contention with ACU:
The same EfficientNetB2 based CIP is used to profile the incrementally increasing ACU contention.

We increased the number of ACU threads by 2 threads at every 400 frames. The inference delays

of the CIP are shown in Figure 8. This fine grained contention steps will be used to regenerate

the system contention at model pruning step. However, in order to do that, we need to know the

system contention levels that match to specific steps of ACU contention.

We use kernel density estimation with Gaussian kernel to find the contention levels in the system.

We selected the Gaussian kernel because the distribution of inference delays show a similar pattern

to Gaussian distribution at every specific contention level. When we apply kernel density estimation

on the inference delay axis, we remove the position information of the inference delay samples.

Therefore, we automatically combine repeating or similar contention levels in time, which can be

caused by repeating same contention combination or completely different combinations with same

effects. The kernel density estimation is shown in Figure 9. The peaks of this plot are the means of

the estimated Gaussian kernels. Therefore, the peaks are the specific contention levels that exist in

our system contention. The inference delay values of these peaks are matched to inference delay

values at ACU profile to find required the number of ACU threads to regenerate each contention

level. In this specific example, the number of ACU threads are found to be 2, 8, 16 and 20.

5.2.2 Model Set Pruning Evaluation.
Once we have the required number of ACUs to regenerate the system contention, we benchmark

our input set of models under the artificial contention that is generated by ACUs. After this

benchmarking step, the accuracy and average inference delay across all contention levels of each

model is calculated. These values for our specific example are shown in Figure 10a. The abbreviations

in the legend of the figure and their corresponding models are as following: eb0 to eb7 are for

EfficientNet models, r50V2 and r101v2 are for ResNetV2 models, iv3 is for InceptionNetV3, d121

to d201 are for DenseNet models, mnet is for MobileNet, mnet2 is for MobileNetV2, nasm is

for NasNetMobile, and nasl is for NasNetLarge. This plot clearly shows that some models have

no advantage at all compared to others. For example whole families of ResNetv2 and DenseNet

architectures are performing with less accuracy using more inference time compared to other
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(a) All models (b) Pareto pruned models

Fig. 10. Pareto pruning - Accuracy vs inference delay values of models

(a) Pareto pruned models and violating slopes (b) Transition pruned models

Fig. 11. Transition pruning - Accuracy vs inference delay values of models

models. Therefore, we calculate the accuracy-inference delay Pareto frontier of the models to

remove these bad performing models from consideration for our task. The Pareto pruned model set

is shown in Figure 10b.

Each model in Pareto pruned model set is guaranteed to give best accuracy at its inference delay

or below. However, this theoretical result does not correspond to the equally good practical result

when these models are used in an application on an embedded system. A model can still be on the

Pareto frontier if it improves accuracy very slightly but requires a lot more time and memory for

inference. Using such models harms the performance of our application as they do not provide

significant advantage while still requiring the cost. Therefore, we remove these models from our

model set as well. In order to remove these models, we check the slope of every consecutive models.

If the slope is too big, we remove the model with smaller accuracy. If the slope is too small, we

remove the model with higher accuracy. In our specific example, we define the slope thresholds as

0.25 and 1.5. The slopes that violate these thresholds are shown in Figure 11a. The pruned models

are pointed by a red arrow. The resulting model set is shown in Figure 11b.

We can consider some of the prunings to understand how this stage can save memory. For

example, eb4 (EfficientNetB4) requires 79.1 MB while eb6 (EfficientNetB6) requires 174.8 MB. Even

if eb6 would satisfy the user requirements, it would require more than 2 times larger memory than

eb4 without providing significant advantage.

In the final step of pruning, the contention levels and the user requirement are considered. The

user requirement is the inference delay threshold. The application’s inference delay for one frame

should not exceed this inference delay threshold in any contention levels. The remaining models’

inference delays are considered under the existing contention levels as in Figure 12. In this figure,

every model is run for 250 frames for each of the contention levels. Note that, the previous steps of
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Fig. 12. Inference delays of the transition pruned models under existing contention levels

pruning guaranteed that a model with higher inference delay has also better accuracy with a decent

margin. In this step, we select the best performing model that satisfies the inference delay threshold

in each contention level. Note that, we do not need to select one unique model for each contention

level. In first two contention levels, eb4 (EfficientNetB4) is the optimal model. In the third level,

iv3 (InceptionNetv3) is the optimal model. eb3 (EfficientNetB3) satisfies the delay threshold at

contention level 2 but violates it at contention level 3. Since it is not selected at contention level

2 and there is no intermediate contention level between levels 2 and 3, eb3 is pruned in this step.

Similarly, mnet (MobileNetv1) satisfies the inference delay threshold at all of the contention levels.

However, there is always at least one model that satisfies the delay threshold and performs better

than mnet. Therefore, mnet is also pruned from the model set. In the contention level 4, the optimal

model is mnet2 (MobileNetv2). As a final result, the optimal model set for this contention scenario

consists of eb4 (EfficientNetB4), iv3 (InceptionNetv3) and mnet2 (MobileNetv2). Our contention

grading and model pruning methods decreased the number of model from 18 to 3 for a contention

scenario where 12 unique combinations of 3 real applications are running on the system.

5.3 Runtime Performance Evaluation

After we obtain a pruned model set, we run our contention-aware adaptive model selection frame-

work. First we show the performance of our predictive model selection method and then also show

how the prior contention grading stage positively contributed to the model selection performance.

5.3.1 Predictive Model Selection Performance.
We compare our predictive model selection with two reactive model selection approaches. The first

one is called 1-step reactive model selection which checks the last frame’s inference and then selects

1-step stronger model if the last frame’s inference is below threshold. Otherwise, it selects the next

(1-step) weaker model. The second reactive approach is called N-step reactive model selection. This

approach similarly checks the last frame’s inference delay and selects 1-step stronger model if

the last frame’s inference is below the threshold. However, if the last frame’s inference is above

the threshold, it conservatively selects the weakest model for the next frame to satisfy the delay

threshold.

The temporal plots for 6000 frames under a specific contention regime are shown in Figure 13. This

contention regime is generated by randomly sampling real system contention applications that are

shown in Figure 7. The inference delay and the selected model’s index are given for three different

model selection methods. The individual models’ inference delays are also plotted for comparison

purposes. The inference delays are averaged over 10 frames to smooth the plots. The delay plots

for individual models in Figure 13a show that using a single model under varying contention is not

optimal. The individual plots also suggest the best model under a specific contention regime, e.g.,
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Fig. 13. Temporal comparison of individual models, reactive methods and the predictive method under
varying contention

around the frames 900, 1900, 3900, the ideal models are mnet2, iv3, eb4 respectively. It can be seen

that the predictive method can successfully select the optimal model most of the time in Figure 13d.

It can also choose multiple models under the same contention region. One example of this can be

seen just after frame 2000. In this region, predictive model selection selects eb4 and iv3 frequently.

This happens when contention corresponds to the middle of two models, i.e contention is high for

iv3 and is low for eb4. In this case, predictive model selection changes the optimal model selection

between eb4 and iv3 frequently to satisfy inference delay threshold and maximize the accuracy.

1-step reactive model selection and N-step reactive model selection frequently fail to satisfy delay

threshold as shown in Figure 13b and Figure 13c, respectively.

Table 1 shows the summary of data for Figure 13 in terms of average performance of different

schemes. If a frame classification takes more time than predefined threshold, we consider it as delay

violation. The delay violation is a way to measure wrong selections. The table shows that all of the

model selection methods have an accuracy around the middle of individual models. However, the

reactive methods have large delay violations as well. On the other hand, the predictive method has

only 11.66% delay violation.
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Model Accuracy (%) Delay Violations (%)

MobileNetV2 (mnet2) 57.50 0.05

InceptionNetV3 (iv3) 63.93 29.75

EfficientNet-B4 (eb4) 70.00 65.50

Average-(mnet2, iv3, eb4) 63.81 31.76

1-step Reactive Model Selection 65.93 34.61

N-step Reactive Model Selection 64.86 27.40

Predictive Model Selection 64.60 11.66

Table 1. Comparison of methods in a specific contention regime - Dataset: ImageNetV2

.

Fig. 14. Temporal comparison of predictive method with model sets after each pruning stage under varying
contention

5.3.2 The Effect of Contention Grading on Runtime.
In this section, we consider the effect of contention grading on runtime with respect to accuracy

and delay violation. There are 3 stages of pruning which are Pareto pruning, transition pruning and

contention pruning. These are applied one after another in this order. Therefore, we will compare

3 model sets on runtime using the same predictive model selection method. The Pareto pruned

model set has 9 models which are shown in Figure 10b, the transition pruned model set has 5
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Fig. 15. Selection counts of models for each model set

Model Accuracy (%) Delay Violations (%) Memory Consumption (MB)

Pareto-pruned 65.91 31.35 4290

Transition-pruned 64.91 12.46 3650

Final 64.60 11.66 3460

Table 2. Model set comparison - Dataset: ImageNetV2

.

models which are shown in Figure 11b, full pruned model set has 3 models which are MobileNetV2,

InceptionNetV3, and EfficientNetB4.

The temporal comparison of three model sets using the predictive method is shown in Figure 14.

When the number of models increase in a model set, the number of model switching also increases

which harms the performance since there is only one optimal model in one contention level. When

we examined the selected indexes of Pareto pruned and transition pruned model sets, we see that

mnet and eb7 are almost never selected. Therefore, they occupy memory without providing any

gain to system. We plotted the selection counts of models for each model set in Figure 15. This

plot shows the most frequently used models in each model set. The most frequently used models

are similar in most cases (mnet2, iv3, eb4). The only exception is eb0 in Pareto pruned model set

where it is used more than mnet2. eb0 is pruned in transition pruning since it requires more than

1.5x memory of mnet2 while it does not give significant accuracy gain over mnet2. Our model set

pruning stage finds these frequently selected models (mnet2, iv3, eb4) before runtime.

We examined the overall performance of these model sets in Table 2. The Pareto-pruned model

set has a large delay violation percentage at 31.35%. Transition pruning achieves a decrease in delay

violation significantly from 31.35% to 12.46% with 1.0% absolute accuracy loss. The final pruning

achieves the smallest delay violation percentage at 11.66% with another 0.31% absolute accuracy

loss. Furthermore, the final pruning achieves the smallest memory consumption. The provided

memory measurements include base Tensorflow cost which is around 3GB. This is a one time cost

and independent from the number of loaded models. Therefore, another comparison can be made

without including this base cost. Then memory consumption values are 1240MB, 600MB, 410MB

for Pareto-pruned, transition-pruned and final model sets, respectively. Considering these results,

the final pruning achieves the best memory efficiency by occupying 0.33 of what Pareto pruned

model set occupies and 0.68 of transition pruned model set occupies.

5.4 System Implementation Details
Our framework works with neural network based applications. Therefore, we decided to use Jetson

TX2 which has a GPU for neural network loads. EfficientNetB0, a neural network that is extensively

used in our experiments, runs in 34.9 ms on Jetson TX2 GPU and in 61.1 ms on Jetson TX2 CPU.

Therefore, Jetson TX2 GPU gives a speedup of 1.75 over a mobile CPU. Moreover, our framework
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Fig. 16. System power measurement when model selection is running under varying contention

is designed for real time applications and Jetson TX2 is a good fit since it is an embedded system.

Lastly, we are using Tensorflow for neural network applications and Jetson TX2 is running Linux

with Tensorflow support.

The power consumption corresponding to Figure 14c is shown in Figure 16a. The details of

applications that create contention are also given in Figure 16b. The RADAR and Fusion applications

run on CPU, the LiDAR application runs on GPU. The power is measured by the built-in power

sensor of Jetson TX2 which provides the average of the last 512 samples from continuously probed

data when it is called. The peak power is 12170.0 mW.

The inference delays and the power consumption are not changing in parallel, which would be

the expected behavior in single threaded applications. However, since our system is multi-threaded

and uses both CPU and GPU, the behavior is different. This is because the power usages of GPU

and CPU are different. The behavior can be understood by comparing the first three regions. In

region 400-600, the contention is very small and limited to CPU and therefore the inference delay

of our application is small. However, power consumption is high. This is because the GPU is used

extensively all the time. On the other hand, in the region 200-400, the contention is high and heavily

focused on CPU. Therefore, the inference delay of our application is high which is compensated by

choosing a smaller model. This is because the CPU is being used heavily and becomes a bottleneck

in the system. However, since the CPU does not consume as much power as the GPU, the power

consumption (average of 512 samples from Jetson TX2 sensor) is low. The contention of region

0-200 is similar to region 400-600. However, there is one more GPU application in region 0-200.

Therefore, the power consumption is bigger.

We also measured temperature values of GPU, CPU and the board. Once the system is used for

a while and stabilizes, the temperature does not change much. GPU and CPU temperature stay

between 38C and 40C, and the board temperature stays around 35C. Jetson TX2 has a fan and

therefore active cooling results in stable temperature values for our workload.

The average running time cost for one frame of our predictive framework is 0.29𝑚𝑠 which is

approximately 690 times smaller than average inference delay for one frame. Therefore, we can say

that the time cost of the framework is insignificant. This only includes the selection logic which is

a relatively light calculation. A matrix multiplication is used for linear regression models and an

iteration is used for model selection. Overall, model selection takes too little time to trigger any

measurement hardware and we do not see any unusual pattern in general power and temperature

measurements. Therefore, the power consumption and temperature overhead of model selection is

negligible.
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Model M

Average of first

inference delays right after

switch to Model M (s)

Average of all

inference delays when

the Model M is used (s)

Difference

in percentage

EfficientNetB0 0.03431 0.03324 3.21%

EfficientNetB2 0.04663 0.04683 -0.41%

EfficientNetB3 0.05318 0.05261 1.09%

EfficientNetB4 0.06495 0.06426 1.07%

Table 3. Inference delays of 4 models when model switching is used

All of our models are stored in RAM during runtime. To measure switching overhead, we loaded 4

models in RAM, ran 1 model for 100 frames, then switched to another model and kept this cycle for

10000 frames. The Table 3 shows the difference between first inference delays right after switch and

mean of all inference delays for each model. The table shows that there is no significant difference

between the first inference delay and the rest. Sometimes, the average of first inference delay is

even faster than the average of the rest as in the case of EfficientNetB2. Note that these values are

average. Therefore, in many switch cases the other models also are faster in their first inference

delay compared to the rest. As a result, we can say that we do not observe any perceivable switching

overhead.

5.5 Comparison with Early Exit Based Method
Early exit networks present an alternative approach to adapting neural network based applications

to contention [35]. An early exit network consists of different exit points that are typically derived

by adding classifier layers to different intermediate features in a neural network to generate

the final class predictions. Different early exit branches are selected as a response to changing

contention levels. Since this work is closely related to the runtime part of our work, we compare

the contention-aware early exit methodology with our work in this section.

We designed an early exit model to adapt to changing contention levels based on the methodology

presented in [35]. We used EfficientNetB0 architecture as the backbone of our early exit model.

All of the EfficientNet architectures consist of 7 blocks. These blocks are scaled in terms of width

and depth to create heavier models, while the number of blocks stays constant throughout all

EfficientNet architectures. Therefore, we decided to use these blocks as our early exit paths. We

created 5 early exit branches from the output of block 3 to the output of 7. For each exit, we built

a classifier top that is similar to the original EfficientNet top. This classifier top includes a 1x1

convolution layer to set channel sizes of the features to some constant value (1280), a global average

pooling to remove spatial size dependency and a fully connected layer to generate predictions. This

top design makes the early exit branches input size agnostic. Moreover, we created 4 different input

sizes as (128x128, 160x160, 192x192, 224x224) by following a similar practice to [35]. In the end, our

early exit model supports 20 different combinations of early exit branches and input sizes.

We also designed 4 individual models to compare with the early exit model. Since the early exit

model is trained from scratch, we also trained individual models from scratch under the same

conditions to make fair accuracy comparisons. Therefore, we did not use pre-trained models as in

the previous section. We used the same intermediate points as the early exit branches to design

individual models. For example, the smallest individual model starts as an EfficientNetB0 model

but stops at block 4 and ends with a classifier top. Similarly, the other models stop at blocks 5,6,

and 7. As a result, our individual models are directly comparable with the corresponding early exit

branches in terms of architecture.

The training is done on the ImageNet training dataset. The ImageNet validation dataset is used

for monitoring improvement and early stopping. The ImageNetV2 test set is used for reporting
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Fig. 17. Performance comparison of early exit branches -(branch no, input size) and corresponding individual
models - i(model size)-input size

the test accuracies. The Adam optimizer [16] is used to train the parameters. Random cropping,

random horizontal flipping and random contrast (factor 0.8-1.2) are used as data augmentation

techniques.

5.5.1 Multi Objective Optimization and Impact on Accuracy.

The training of early exit model is a multi objective optimization. During forward propagation,

the same data is fed to the network and each early exit branch makes a prediction. An error

is calculated at each early exit branch. Hence, during back propagation, multiple gradients are

propagated backwards. This results in multiple objective optimization of the shared parameters.

For example, a convolution layer in block 3 needs to learn both low level features for early exit

branch 7 and high level features for early exit branch 3. This results in longer training times and

also inferior accuracy.

In [33], it is shown that the early exit method can have regularization effect since it makes it

harder to train the neural network. However, this effect is only applicable when the data is too small

or the network is too high capacity for the data. Also, there are other regularization techniques that

are widely adopted in the neural network design such as dropout [28] or data augmentation [4].

The inference delays and accuracies of early exit branches and corresponding individual models

are shown in Figure 17. The early exit branches in the legend are indicated as (branch number,

image size). The individual models in the legend are indicated as i(model size)-image size. Note that

branch number and model size are directly comparable as explained previously. This similarity is

shown with colors in the plot. The individual models outperform the early exit branches in terms

of inference delay and accuracy. Moreover, the early exit model has a time overhead due to control

logic. For example, early exit branch (7.0, 224) and individual model i7-224 are completely same

in terms of architecture and input size. However, individual model runs slightly faster than the

early exit branch. The same difference can be observed for the other individual models and their

corresponding early exit branches.

5.5.2 Runtime Performance Comparison.

We tested the early exit model and the individual model set on runtime with the contention

profile in previous section. We used our regression model based selection methodology for early

exit runtime branch selection and individual model set runtime model selection. The temporal

comparison and the numerical results for the early exit, individual model set and the smallest
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Fig. 18. Temporal comparison of the smallest individual model, early exit, individual model selection under
varying contention

individual model are shown in Figure 18 and Table 4. The individual model set has almost absolute

9% higher accuracy than the early exit model. Moreover, the delay violation of the individual model

set is slightly less than the early exit model.

There are 20 early exit and input size combinations in the early exit model. However, this

granularity is not used completely even though a large variety of contention levels (12 unique

contention combinations as in Figure 7) are experienced. This is because one early exit-input

size combination can be the optimal choice for more than one contention level, as in the case of

individual models. On the other hand, this individual model set of 4 models can achieve slightly

less delay violation and much better accuracy than the early exit model. Therefore, we can say that

the high level of granularity of early exit networks is not helpful even in the presence of frequently

changing contention. The accuracy of early exit model is only comparable to the smallest individual

model which has a significantly lower delay violation of 5.91%.

In the early exit architecture, convolution layer parameters are shared among early exit branches.

Therefore, the architecture aims to achieve less parameters than the total parameters of multiple
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Model Accuracy (%) Delay Violations (%) Memory Consumption (MB)

i4-128 34.60 05.91 3070

Early exit model 37.03 21.90 3300

Individual models 45.87 20.81 3390

Table 4. Early exit model and individual model set comparison - Dataset: ImageNetV2

.

individual models. However, a large part of the parameters in convolutional neural networks are

coming from the fully connected layers at the classifier. The recent and successful EfficientNet

architectures can be example for this. EfficientNetB0 has 5,330,571 parameters in total of which

1,281,000 parameters are from the fully connected layer at the classifier. Therefore, whenever we add

a branch, we add a fully connected layer and a large number of parameters. As a result, the size of

the early exit model is 44 MB, whereas the total size of our individual models is 55 MB (7+9+18+21).

The early exit model, of course, would have much less parameters compared to the total of 20

individual models which correspond to each early exit branch-input size combination. However,

as we discussed earlier, we do not need that many models for effectively adapting to contention.

Moreover, our contention grading and model set pruning framework allows us to decrease the total

number of models by intelligently selecting optimal models for the system contention and user

requirement.

One drawback of using early exit models at runtime is the switching cost of the branches.

Whenever the output of the model is changed to a different early exit branch, an additional time is

required for the execution graph. We examined these switch costs. Some switching combinations

take more time than the other ones but we did not observe a certain pattern. The average switching

cost is 5.58 ms. The inference delays of early exit branches are ranging from 18 ms to 35 ms under no

contention. Therefore, the average switching cost can be up to 31% of the inference delay whenever

a switching occurs.

In summary, we believe that the proposed approach, which comprises of selecting individual

models for contention adaptation is more effective in terms of accuracy, inference latency and

runtime overheads compared to early exit based methods.

5.6 Comparison with Slimmable Network Based Method
Even though the original work of slimmable networks [40] does not consider runtime in the

presence of contention, it is possible to use them in this context. Slimmable networks use less

parameters to create sub-networks in the same backbone architecture. Since slimming is similar

to early exit in the sense that they are both dynamic neural network methods and utilize weight

sharing, we implement a slimmable neural network and compare our method with it.

We designed a slimmable neural network with 4 switches (0.25x, 0.50x, 0.75x, 1.0x) where the

backbone architecture is EfficientNetB0. We use the same individual models that are used in the

previous section. Therefore, the architectures of our biggest individual model and 1.0x switch of

our slimmable network are exactly the same. The same training configuration is used as specified

in the previous section.

5.6.1 The Effect of Batch Size on Slimmable Networks.

Slimming operation is basically using less number of filter channels in convolution operations.

Therefore, slimming reduces the FLOPs. However, this does not always translate to speedup. Every

operation has an arithmetic intensity value which can be calculated by the ratio of number of

FLOPS to number of byte accesses. Similarly, every processor has an ops to byte ratio that can

be calculated by the ratio of math bandwidth to memory bandwidth. If the arithmetic intensity
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of an operation is smaller than the ops to byte ratio of the processor, the operation is limited

by the memory. Conversely, if the arithmetic intensity of an operation is larger than the ops to

byte ratio of the processor, the operation is limited by math (arithmetic). Finally, if neither of

the math and memory pipelines of the processor are saturated by the operation, the operation is

limited by the latency. The latency limitation happens when parallelism of the operation is not

enough to saturate the processor’s capabilities. While it is possible to calculate the arithmetic

intensity of each operation in a neural network, it is not practical to do so since we are using very

deep neural networks. Moreover, theoretical arithmetic intensity calculation is only a first-order

approximation. Therefore, we provided empirical results with different batch sizes in Figure 19 to

show the saturation points of GPU pipelines where the slimming operation becomes useful. It is

important to note that these results are specific to a given combination of neural network and GPU.

Using a better GPU in all aspects or using a neural network with smaller width would result in

requiring larger batch size to make slimming useful. Figure 19 shows that the minimum batch size

of 8 is required to achieve a speedup at every slimming point. However, using batch inferences in

embedded systems is not useful. Since embedded systems are usually used in real-time applications,

waiting for new data for batches and then running batch inference may not be practical. Moreover,

since embedded systems are already resource constrained systems, running inference with large

batch size takes too much time and results in missing deadlines of many points in the batch data.

Even if we find a very specific scenario where inference with large batch size in an embedded

system is required, our proposed method using individual models is still superior compared to

the use of slimmable network switches in terms of accuracy. This is because training a slimmable

network is a multi objective optimization like early exit since the weights of a slimmable network

are shared among different switches. The comparison of individual models and slimmable networks

for different batch sizes are shown in Figure 20. Slimmable network switches do not provide a

tradeoff in batch size 1 and provide only a partial tradeoff in batch size 4. It starts to provide a

tradeoff in batch size 8. However, the individual models provide a tradeoff in all batch sizes and

have better accuracy than slimmable network switches. Note that i7-224 individual model and 1.0x

slimmable network switch have the exact same architecture. The other individual models do not

have the exact same architectures with slimmable switches but since they have similar inference

delays for high batch sizes, their accuracies can be fairly compared.

All models in our experiments are implemented in graph execution instead of eager execution.

The graph execution requires models to be statically compiled. As a result, it is much faster than

eager execution. Since the slimmable networks are dynamic networks, implementing them in

graph mode requires different approaches and additional logic. We noticed these implementation

differences result in 1-4 ms deviation in inference delay. However, when the batch size is increased,

this deviation becomes negligible.

5.6.2 Runtime Performance Comparison.

Even though our framework is designed for real-time systems and large batch sizes are not

preferred in real-time systems, we compare ourmethodologywith slimmable networks by increasing

batch size for the sake of comparison. We used a batch size of 8 and decreased the intensity of

contention compared to previous sections in order to keep the inference delays in a reasonable

range. Therefore, the metrics in this section are not comparable to the ones in previous sections.

The temporal comparison and the numerical results for the slimmable model and individual

model set are shown in Figure 21 and Table 5. The threshold is determined by the maximum delay of

the heaviest model under no contention. This is a fair selection of threshold since the heaviest model

is the same in both methods. Table 5 shows the accuracy achieved by our proposed individual model
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Fig. 19. The effect of batch
size on inference delays of
switches of a slimmable
network

(a) Batch size 1 (b) Batch size 4 (c) Batch size 8

Fig. 20. Accuracy - inference delay plots of individual models and slimmable
network switches under different batch sizes

Fig. 21. Temporal comparison of slimmable model and individual model selection under varying contention

Model Accuracy (%) Delay Violations (%)

Slimmable model 44.12 42.44

Individual models 51.25 16.55

Table 5. Slimmable model and individual model set comparison - Dataset: ImageNetV2.

selection method is better than using the slimmable model as expected from previous analysis. The

delay violation of the individual model set is also significantly better than slimmable model. These

results are expected since the individual model set provides a better tradeoff than the slimmable

model.

The slimmable networks are similar to the early exit networks in the sense that they share

weights for different switches. Therefore, they use less memory compared to individual model

set that has same number of models as the switches in the slimmable network. However, as we

discussed in the previous sections, our model set pruning technique reduces the number of models

for a given system and applications, and therefore achieves efficient memory consumption.

In the end, we believe our proposed approach is more effective in terms of accuracy and inference

latency than the slimmable neural network based method. Moreover, our approach does not have
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limitations such as minimum batch size depending on the neural network architecture and the

hardware as slimmable neural networks do.

6 CONCLUSION
In this paper, we proposed a two stage framework to enable contention-aware adaptive image

classification model selection. Our framework takes a deep learning model set, a user requirement

and the system with contention and creates a contention-aware application that runs on the system.

In the first stage, we define Contention Impact Profiler (CIP) that can profile system contention effect

to our application. Then we analyze the profile with kernel density estimation to find the system

contention levels. We define Artificial Contention Units (ACU) to regenerate these contention

level in a controlled environment. Then, we run 3-stage model pruning on the given model set to

select optimal models for the system contention and the user requirement. In the second stage, we

define a runtime framework to use previously found models to adapt to changing contention. Our

runtime framework employs linear regression models to predict future inference of the models

and selects the optimal model for the existing contention. The experimental results show that our

predictive model selection outperforms the average of individual models in both accuracy and

inference delay violation. Predictive model selection also outperforms the reactive model selection

methods and early exit method. We demonstrated our technique using image classification while the

contention is created by fusion, RADAR and LiDAR tasks to model an autonomous car environment.

However, our framework can work with any neural network based primary application along with

any contention applications. For example, the primary application can be object detection while

contention can be created by data communication and data encryption. Alternatively, the primary

application can be neural network based speech processing and video game graphics can create

contention in a mobile system.
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