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Abstract—In this paper, we present a personalized deep
learning approach to estimate blood pressure (BP) us-
ing the photoplethysmogram (PPG) signal. We propose a
hybrid neural network architecture consisting of convolu-
tional, recurrent, and fully connected layers that operates
directly on the raw PPG time series and provides BP esti-
mation every 5 seconds. To address the problem of limited
personal PPG and BP data for individuals, we propose a
transfer learning technique that personalizes specific lay-
ers of a network pre-trained with abundant data from other
patients. We use the MIMIC III database which contains PPG
and continuous BP data measured invasively via an arterial
catheter to develop and analyze our approach. Our trans-
fer learning technique, namely BP-CRNN-Transfer, achieves
a mean absolute error (MAE) of 3.52 and 2.20 mmHg for
SBP and DBP estimation, respectively, outperforming ex-
isting methods. Our approach satisfies both the BHS and
AAMI blood pressure measurement standards for SBP and
DBP. Moreover, our results demonstrate that as little as
50 data samples per person are required to train accurate
personalized models. We carry out Bland-Altman and cor-
relation analysis to compare our method to the invasive ar-
terial catheter, which is the gold-standard BP measurement
method.

Index Terms—Deep learning, transfer learning,
wearables, blood pressure, photoplethysmogram.

I. INTRODUCTION

B LOOD pressure (BP) is the most important indicator of
cardiovascular health. High blood pressure, or hyperten-

sion, affects 30% of American adults and contributes to over
410,000 deaths per year [1], [2]. This condition has been called
“the silent killer,” as typically no symptoms are recognized
before significant damage has already been done to the heart and
arteries [3]. BP is defined as the pressure exerted on the arteries
as blood is pumped throughout the body and is measured in
millimeters of mercury (mmHg). Systolic (SBP) and diastolic
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blood pressure (DBP) are the primary metrics used to measure
BP, which are defined as the maximum and minimum blood
pressure, respectively, during a pulse.

For accurate diagnosis and treatment of hypertension, regu-
lar BP measurement is necessary. According to the American
College of Cardiology, increased at-home BP monitoring is
essential for recognizing inconsistencies in measurements taken
in a medical setting [4]. Currently, the predominant device for
measuring BP is a mercury sphygmomanometer which involves
attaching an inflatable cuff around the upper arm [5]. This pro-
cess requires significant user effort, which limits the frequency
of BP measurements and increases the chance of measurement
error. The use of an arterial catheter can provide continuous BP
measurement; however, it is highly invasive and impractical for
daily life. On the other hand, wearable devices are widely used
for non-invasive, continuous monitoring of biological informa-
tion [6]. Continuous and automated blood pressure estimation
could be incorporated into one’s daily routine to obtain better
insight and detect abnormal BP fluctuation.

One prominent approach is to estimate BP with the photo-
plethysmogram (PPG) sensor, which is available in most wrist
wearables. The principle of the PPG sensor is to optically
measure the dilation and constriction of blood vessels. The
resulting PPG signal is a fusion of heart activity, vascular re-
laxation processes, and microcirculation system status, making
its time-frequency domain information rich and diverse [7]. In
this paper, we propose a deep learning approach to personalized
BP estimation based on the PPG signal.

A. Related Work

Traditional machine learning approaches to PPG-based BP
estimation focus on pulse wave analysis (PWA) methods. PWA
involves extracting both time and frequency domain features
from the PPG series and using these hand-crafted features as
inputs to the BP estimation model. [8] extracts nineteen features
from each PPG cycle based on its morphology. They use these
features and the corresponding SBP and DBP values to train dif-
ferent regression models. Their approach lacks personalization,
which may be the reason for higher estimation errors since these
features have a person-specific response to BP [9]. [10] and [11]
both use a random forest as their BP estimation model. [10] uses
a feature selection algorithm to determine which morphological
features are most useful for BP estimation and found that many
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features are irrelevant. Since the PPG signal is highly sensitive
to different sources of noise [12] and its morphology can range
from person to person, it is difficult to detect the key points in
the signal required for feature engineering. In addition, manually
engineered features can prove to be redundant or irrelevant in
the PPG-BP modeling process. As a result, the information
contained in the PPG signal may not be fully utilized.

In our previous work [13], we propose a method for personal-
ized BP estimation using wavelet decomposition to extract time-
frequency domain features from the PPG signal. These features
are then used to train a random forest model for SBP and DBP
estimation. Unlike previous approaches which extract features
from the PPG signal on a per cycle basis, wavelet decomposition
captures dependencies between cycles in the time-frequency
domain. While this approach produced accurate estimations, 10
hours of continuous BP and PPG data are required per person
for training. Although PPG data can be continuously measured,
large amounts of BP data are difficult to acquire outside a
hospital setting.

In order to address the limitations of these previous methods,
we propose a deep learning approach that utilizes a novel transfer
learning technique that requires as little as 50 samples to train
accurate personalized models. Deep learning models are widely
used to model nonlinear relationships and have been applied to
various tasks involving physiological signals [14]–[16]. Deep
learning addresses the challenges of manual feature engineering
and information loss by directly learning from the raw PPG
data. [17]–[19] build deep learning models for PPG-based BP
estimation and utilize personalization techniques to improve
performance. [17] uses a spectro-temporal neural network that
takes a 5 second PPG segment and its corresponding spec-
trogram as inputs to their model. When personalizing their
model, the SBP and DBP MAE decrease by 39% and 44%,
respectively, indicating that the relationship between BP and
PPG is subject-dependent. [18] utilizes a Siamese neural net-
work to estimate the offset from a calibration PPG-BP sample.
The network uses a series of convolutional layers to derive an
effective representation of the PPG series and achieves high
estimation performance. [19] proposes a convolutional neural
network (CNN) for BP estimation and utilizes transfer learning
to personalize their model to each patient. Their proposed model
requires 4000 personal BP samples for transfer learning to
achieve high performance. Such a large number of personal BP
samples is not possible to collect outside a hospital setting.

Transfer learning focuses on storing knowledge gained from
solving one problem (i.e., source domain) and applying it to a
different but related problem (i.e., target domain), which usually
contains a small number of data samples to train a model [20].
We propose to use a pre-trained model with abundant PPG and
BP data from a large pool of source patients to drastically reduce
the required data for new patients, as illustrated in Fig. 1.

Deep learning models are conducive to transfer learning due
to the modularity of their architectures. In this work, we develop
our architecture, namely Blood Pressure – Convolutional Recur-
rent Neural Network (BP-CRNN), based on the Convolutional,
Long Short-Term Memory, fully connected Deep Neural Net-
work (CLDNN) [21], one of the popular hybrid artificial neural

Fig. 1. Transfer learning overview for PPG-based BP estimation.

network (ANN) architectures. Our proposed method, namely
BP-CRNN-Transfer, personalizes specific network layers during
transfer learning to reduce the number of required training
samples. Our contributions are as follows:

� We propose a hybrid neural network consisting of con-
volutional and recurrent layers which operate directly on
the raw PPG time series to reduce information loss and
effectively model the PPG-BP relationship.

� We propose a novel transfer learning technique that
personalizes specific layers of a pre-trained network to
improve the performance of PPG-based BP estimation,
demonstrating that PPG-BP data of other patients can be
used to enhance the modeling of a new patient’s PPG-BP
relationship.

� We demonstrate that the proposed transfer learning tech-
nique improves BP estimation performance by 23.3% for
SBP and 19.1% for DBP. We verify our approach is con-
sistent with the gold-standard BP measurement method
through Bland-Altman and correlation analysis.

� We show that our proposed transfer learning method re-
quires 10x less personal PPG-BP data to achieve perfor-
mance equivalent to that of a new personalized model
trained with abundant data.

The rest of the paper is organized as follows. In Section II, data
acquisition and our network architecture are presented. We then
detail the proposed transfer learning technique. In Section III, the
performance of the proposed method is evaluated. We compare
how model performance changes for different numbers of train-
ing samples, with and without using transfer learning. Finally,
we conclude the paper in Section IV.

II. METHOD

In this section, we first describe the MIMIC III Matched Sub-
set database and the PPG and BP preprocessing steps. We then
present the network architecture and transfer learning technique.

A. Data Acquisition and Preprocessing

Data was obtained from the Multiparameter Intelligent Mon-
itoring in Intensive Care III (MIMIC III) Matched Subset
database [22], [23]. This database contains records for thousands
of intensive care unit patients. Records in this database have been
matched to records from the MIMIC III Clinical database [24],
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Fig. 2. Output of peak detection algorithm – SBP and DBP vs. raw
ABP time series.

Fig. 3. Distribution of SBP and DBP samples among the 100 patients.
The blue dashed lines indicate the mean SBP/DBP and the red dashed
lines correspond to 1 standard deviation above and below the mean
SBP/DBP.

which includes de-identified demographic data. The waveforms
collected include ECG, respiration, continuous blood pressure,
and PPG signals each sampled at 125 Hz. The arterial blood
pressure (ABP) was directly measured from a radial artery using
an invasive catheter. A fingertip sensor was used to measure the
PPG data. Only patients with sufficient PPG and blood pressure
data were considered for this study. We trained and tested our
PPG-based BP estimation method on 100 randomly selected
patients who had at least 10 hours of high-quality data after
preprocessing. Out of these 100 patients, 56 are male and 44 are
female. The age of the patients ranges from 21 to 82 with a mean
age of 58.

Our objective is to operate directly on the raw PPG data
and estimate SBP and DBP simultaneously. The first stage of
data preprocessing involves splitting the raw PPG signal into
5-second segments and down sampling from 125 Hz to 25 Hz
as this covers the important frequency components [25]. Next,
each PPG segment is labeled with the mean SBP and DBP during
that segment. SBP and DBP values are obtained from the raw
ABP series using a peak detection algorithm as illustrated in
Figure 2. Figure 3 describes the distribution of SBP and DBP
samples. Some sections of the PPG series are corrupted due
to motion artefacts or because the patient was not properly
wearing the sensor. In order to discard these corrupted sections,
an autocorrelation filter is implemented. Since an uncorrupted
PPG segment should maintain a high degree of periodicity, it
is expected that the signal’s autocorrelation is high when the

segment is offset by multiples of the cycle length. Figure 4
displays both an uncorrupted and corrupted PPG segment and
the corresponding autocorrelation signals. The peaks in the auto-
correlation signal are used to determine the quality of each PPG
segment. An empirical threshold of 0.7 was set on the maximum
autocorrelation. The filtered PPG segments are then normalized
to zero mean and unit variance. Using this labeled dataset, we
train our proposed personalized deep neural networks for BP
estimation.

B. Network Architecture

We propose a hybrid network architecture, namely BP-
CRNN, that makes use of convolutional layers, a gated recurrent
unit (GRU), and fully connected (FC) layers. This is an adap-
tation of the CLDNN network presented in [21]. Instead of a
LSTM, we use a GRU which behaves nearly identically with
one fewer equation. In addition, we pass the outputs of both the
first and third convolutional layers to the GRU. Figure 5 displays
our architecture. The rationale is as follows: The convolutional
layers serve as feature extractors for the raw PPG input, while the
GRU models the temporal dependencies between these features.
The GRU’s outputs are then fed to the fully connected layers
which transform the features into a space that makes the BP
easier to estimate.

The input PPG segment is convolved with 50 different filters
to generate 50 outputs in the temporal-feature domain. The
following two convolutional layers also contain 50 filters, which
are convolved with these features to generate the final features
from the PPG segment. Each layer is followed by a rectified
linear unit (ReLU) activation function. The output feature maps
of each convolutional layer are calculated using the equation:

xl
j = Relu

((∑
i

xl−1
i ∗ kij

)
+ bij

)
(1)

where xl
j is the jth map generated by the convolutional layer l,

xl−1
i is the ith feature map of the previous convolutional layer

l−1, kij represents the ith trained convolution kernel, bij is the
additive bias, while � represents the convolution operation and
Relu is the activation function.

Stacking convolutional layers results in a learned feature
hierarchy, where initial layers extract lower-level features and
deeper layers extract higher-level features [26]. We varied the
number of convolutional layers from 1 to 5 and found that 3
convolutional layers resulted in the best performance. In order
to provide both low and high-level features to the GRU to process
simultaneously, the outputs of the first and third convolutional
layers are concatenated. Since each convolutional layer contains
50 filters, 100 extracted feature series are passed to the GRU.
The extracted features at each level are padded such that they
have the same length as the input PPG sequence. As a result, the
input to the GRU has a shape of 100 ∗ tn where tn is the length of
the input PPG segment. The GRU is able to learn the temporal
relationship between these multiple feature channels. A GRU
consists of gating units that control the flow of information
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Fig. 4. Comparison of (a) an uncorrupted PPG segment and (b) its corresponding autocorrelation signal to (c) a corrupted PPG segment and
(d) its corresponding autocorrelation signal.

within the module [27]. The following equations describe the
operation of the GRU:

zt = σ
(
W (z)xt + U (z)ht−1

)
(2)

rt = σ
(
W (r)xt + U (r)ht−1

)
(3)

h′
t = tanh

(
W (h)xt + U (h)(rt � ht−1)

)
(4)

ht = zt � ht−1 + (1− zt)� h′
t (5)

In (5), the final GRU activation ht is a linear interpolation
between the previous activationht−1 and candidate activationh′

t

where the update gate zt determines how much the unit updates
its activation. � represents element-wise multiplication. Eq. (2)
describes the update gate zt calculation, where W (z) and U (z)

are each a set of trainable weights that process the input xt

and the previous activation ht−1, respectively. σ represents the
sigmoid function. The candidate activationh′

t is calculated in Eq.
(4), where rt represents the reset gate, W (h) and U (h) represent
trainable sets of weights, and tanh represents the hyperbolic
tangent function. When rt is close to 0, the reset gate enables
the unit to forget the previous activation ht−1 when calculating
the candidate activation h′

t [27]. In Eq. (3), the reset gate rt is
calculated similarly to the update gate. W (r) and U (r) represent
the reset gate’s trainable weights that process the inputxt and the
previous activation ht−1, respectively. At each time step, a 100-
element vector is processed by the GRU, where each element
corresponds to a feature value. A GRU activation size of 25
was experimentally determined to produce high performance,
resulting in an output of shape 25 ∗ tn.

The last two network layers are fully connected layers that
carry out the final BP estimation. FC layers are effective at map-
ping features into a more separable space [26]. The activations
of the GRU at each time step are flattened into a single vector
for the first FC layer to the process. The output of the network
is a 2-dimensional vector corresponding to the estimated SBP
and DBP values. A ReLU activation function is again used after
each FC layer. Batch normalization [28] is utilized to stabilize

Fig. 5. Proposed BP-CRNN architecture– Convolutional layers serve
as feature extractors, GRU models temporal relationship between fea-
tures, and fully connected layers transform GRU outputs to SBP and
DBP.

the input distribution of each layer during training. This reduces
internal covariate shifts and results in faster training. Overall,
this architecture realizes the high level of complementarity these
individual neural network layers exhibit.

C. Transfer Learning

To train deep neural networks, a large amount of training data
is required to learn effective feature representations. Since our
goal is to train personalized PPG-based BP estimation models,
this means many data samples from a single individual are
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Fig. 6. Proposed transfer learning method, namely BP-CRNN-Transfer. A BP-CRNN model is first pretrained using abundant source patient data.
The final convolutional layer and fully connected layer are finetuned with the target patient’s data.

required. While PPG data can continuously be collected via a
noninvasive wearable, BP data is more difficult to collect. In
order to address this, we propose a transfer learning technique
that results in high performance even when limited data from
the target patient is available.

Transfer learning has most notably been applied to computer
vision (CV) and natural language processing (NLP) tasks. [29]
argues that physiological signals share two important common-
alities with CV and NLP: consistency and complexity. Physi-
ological patterns are consistent across individuals but complex
enough that learning effective feature representations is nontriv-
ial. [30] describes how initial convolutional layers extract lower-
level features, which can be shared across tasks, while deeper
layers generate higher-level features which are task-specific. In
addition, training with different tasks (patients in our case),
can result in a more powerful representation of the data that
could not be learned from a single task (patient). Inspired by
[29], [30], we first train our model with PPG-BP data from a
variety of individuals to learn robust feature extractors that can
be transferred between patients.

Figure 6 illustrates our proposed transfer learning process,
namely BP-CRNN-Transfer. PPG and BP data from n source
patients is used to pre-train a BP-CRNN model. This network is
then used as an initialization for finetuning. In order to person-
alize the model, data from the target patient is used to finetune
specific layers in the network. The last convolutional layer
(Conv3) and last fully connected layer (FC2) are retrained using
the target patient’s data. In addition, the batch normalization
parameters are updated to account for the different data distribu-
tion of the target patient. It was experimentally determined that
retraining these two specific layers resulted in the most robust
transfer learning performance. Table III in Sec. III (B) describes
the transfer learning performance for different combinations of
personalized layers. By retraining the final convolutional layer,
the network can learn high-level PPG feature representations
specific to the individual. Finetuning the last FC layer allows the
model to learn the relationship between the extracted features
and BP for the patient of interest. Our BP-CRNN model consists
of approximately 250,000 trainable parameters, where 18,000 of

these parameters are within the two layers we finetune. This
indicates that we only need to update 7.2% of the network
parameters learned from the source dataset. By retraining a
small percentage of parameters, we prevent the network from
overfitting to the limited target training data.

III. RESULTS AND DISCUSSION

In this section, we describe the experiment settings and com-
pare our personalized BP estimation results with and without
transfer learning to previous methods. We examine how per-
formance is affected by the number of personal data samples
used during training and demonstrate that our transfer learning
approach can achieve high performance with limited data. We
verify our approach is consistent with the gold-standard BP
measurement method through Bland-Altman and correlation
analysis.

A. Experiment Setting

We implement and evaluate our deep learning model using
the Pytorch library [31] in the python environment on an Intel i5
3.2GHz quad-core and 16GB RAM computer. Nvidia GeForce
GPUs are utilized to carry out network training. 1-dimensional
filters of size 7 were implemented for each convolutional layer
and zero padding was used to maintain the input PPG dimension.
Based on the results from [32], a large range in the number
of filters will result in similar performance before overfitting
occurs. We chose to use 50 filters at each layer. All networks are
trained using the Adam optimizer [33]. 10 hours of PPG and BP
data are selected from each patient to be used in our experiments.
5-fold cross-validation is carried out for each patient separately.
This involves shuffling each patient’s data and using 5 differ-
ent train, validation, and test splits for each experiment. Each
validation and test set comprises of 1 hour of PPG-BP data.
The number of samples included in the training sets is varied
from 50 to 3600 samples in order to assess how performance is
affected by training set size, which is detailed in Sec. III (C).
Data separation between patients is maintained to ensure that
no personal data from the target patient is used in pretraining
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for transfer learning. Mean absolute error (MAE) is calculated
and used as our evaluation metric. For each experiment, we
provide the average of MAEs over all patients. MAE is defined
as follows:

MAE =

∑n
i = 1

∣∣∣BP i
pred −BP i

actual

∣∣∣
n

(6)

For our non-transfer method, namely BP-CRNN, separate
personalized models are trained for each of the 100 patients.
Each model is trained only using data from the individual patient.
Since we do not use transfer learning, the parameters of the initial
model are randomly initialized and all layers are updated during
training. To train these models, we use 0.01 as the learning rate
and 32 as the batch size.

For testing our transfer learning technique, namely BP-
CRNN-Transfer, the initial model for the first 50 patients is
trained with the data of the last 50 patients, and vice versa.
This ensures that no data from the target patient is used during
pretraining. When training the initial model for transfer learn-
ing, the learning rate and batch size are set to 0.001 and 256,
respectively. In this case, the learning rate can be decreased and
the batch size increased because there is much more training
data, resulting in a greater number of update steps per epoch.
When fine-tuning the pre-trained model to the target patient,
the learning rate and batch size are set back to 0.01 and 32,
respectively, and only the specific layers mentioned in Sec. II
(C) are updated. Early stopping [34] is implemented for every
training session to save the learned network weights once the
error on the validation set begins to increase. Each network is
trained 5 times and the results averaged in order to account for
differences in model convergence. Our model’s inference time
is 0.32 ± 0.09 (mean ± std) seconds. This time is based on
implementation on a Nvidia GPU. In our future work, we plan to
investigate a lightweight model that can be directly implemented
on a wearable device and research the tradeoffs between model
accuracy, inference time, and memory requirements.

B. BP Estimation Results

We compare the BP estimation performance of our personal-
ized models without and with transfer learning to that of an ag-
gregate model and previous methods in Table I. BP-CRNN and
BP-CRNN-Transfer correspond to our personalized approach
without and with transfer learning, respectively. The aggregate
model, namely Aggregate BP-CRNN, is trained in the same fash-
ion as the pre-trained models for transfer learning as described
in the previous section. However, no personalization or transfer
learning is applied. The high estimation error of Aggregate
BP-CRNN demonstrates the requirement for personalization in
order to effectively model the PPG-BP relationship.

Next, we compare our proposed approach against a dummy
regressor, namely Mean Regressor, which always predicts the
mean SBP and DBP from the target patient’s training set. This is
an important comparison to make as there may be a subject with
relatively constant BP, in which case the BP-CRNN’s estimation
errors will be low [17]. This comparison is drawn to ensure
that our model has learned more than simply estimating the

TABLE I
COMPARISON OF BP ESTIMATION METHODS

patient’s mean BP. In addition, we compare our approach to
our previous work and to the latest deep learning approaches
that propose personalized BP estimation methods. In our pre-
vious work, we apply wavelet decomposition to the PPG series
for feature engineering and train a random forest (RF) as our
BP estimation model [13]. As mentioned in the introduction
section, [17] trains a spectro-temporal neural network using
personal data samples from each patient. [18] uses a Siamese
neural network that takes a raw PPG segment as input and
estimates the BP offset from a calibration PPG-BP sample.
[19] trains a convolutional neural network for BP estimation
and utilizes transfer learning to personalize their model to each
patient.

In our current approach, a model is trained for each patient us-
ing both a non-transfer learning and transfer learning approach,
as described in the experiment setting. Without transfer learning,
namely BP-CRNN, we achieve an average MAE of 4.59 and 2.72
mmHg for SBP and DBP, respectively. As shown in Table I, even
without using transfer learning, our proposed model achieves
improvement in SBP performance compared to the methods
presented in [13], [17], [18]. We attribute this improvement
to the complementarity of our network architecture and its
ability to reduce information loss by operating directly on the
raw PPG series. With the transfer learning approach, namely
BP-CRNN-Transfer, the MAEs decrease to 3.52 and 2.20 mmHg
corresponding to a 23.3% and 19.1% increase in performance
for SBP and DBP estimation as compared to our non-transfer
method. The performance achieved by our BP-CRNN-Transfer
method is also better than our previous approach RF-wavelet
[13] as well as previous deep learning methods [17]–[19]. We
achieve a 27.9% and 15.7% improvement from [13], 62.7% and
68% improvement from [17], and 40.8% and 35.5% improve-
ment from [18] for SBP and DBP, respectively. We achieve a
13.3% improvement for SBP MAE and the same DBP MAE
as compared to [19]. We attribute this increase in performance
to the specific layers we finetune during transfer learning and
our network’s ability to effectively store information contained
in source patients’ data. The BP-CRNN-Transfer MAE is well
under the Mean Regressor MAE, which is 9.07 mmHg for
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TABLE II
COMPARISON OF PROPOSED METHOD TO BHS STANDARDS. BOTH OUR NON-TRANSFER (BP-CRNN) AND TRANSFER LEARNING (BP-CRNN-TRANSFER)

APPROACHES ACHIEVE GRADE A PERFORMANCE FOR SBP AND DBP

Fig. 7. Distributions of (a) SBP and (b) DBP errors using our non-transfer approach compared to distributions of (c) SBP and (d) DBP errors using
our transfer learning approach. The blue dashed lines indicate the mean error and the red dashed lines correspond to 1 standard deviation above
and below the mean error.

SBP and 4.58 mmHg for DBP, indicating that the model can
learn a meaningful relationship between PPG and BP. Since
[19] achieves the closest performance to our proposed method,
we reimplement their approach in order to perform statistical
tests. We carry out a Paired Student’s t-Test separately for each
patient to assess the statistical significance of the difference in
estimation errors between our method and [19]. For 84 out of
the 100 patients, the difference in performance is statistically
significant at the level 0.05 for both SBP and DBP.

We evaluate our proposed method according to the British Hy-
pertension Society (BHS) and the Association for the Advance-
ment of Medical Instrumentation (AAMI) standards for BP mea-
surement. The BHS standard assigns a performance grade based
on the percentage of estimated BP samples that fall within 5, 10,
and 15 mmHg of the corresponding reference BPs. To achieve
Grade A accuracy, at least 60/85/95% of the estimated BP sam-
ples must have an absolute difference of ≤5/10/15 mmHg from
the reference BPs, respectively [35]. Table II describes the results
of our non-transfer and transfer learning approaches according
to the BHS standards. For our non-transfer approach, 72/92/97%
of estimated SBP samples have an absolute difference ≤5/10/15

mmHg, respectively. When using our transfer learning approach,
these percentages increase to 80/95/98% of estimated SBP
samples. For our non-transfer approach, 89/98/99% of estimated
DBP samples have an absolute difference ≤5/10/15 mmHg,
respectively. When using our transfer learning approach, these
percentages increase to 93/99/100% of estimated DBP samples.
Both approaches achieve Grade A performance according to the
BHS standard for SBP and DBP.

The AAMI standard for accurate BP measurement requires
that the mean error between estimated and reference BPs is ≤5
mmHg and the standard deviation (SD) of errors is ≤8 mmHg
[36]. Figure 7 displays the error distribution for SBP and DBP
using both our non-transfer and transfer learning approach over
all patients. Our BP-CRNN (non-transfer) approach achieves a
mean error and standard deviation of −0.07 ± 5.49 mmHg and
−0.05 ± 3.24 mmHg for SBP and DBP, respectively. Our BP-
CRNN-Transfer approach achieves a mean error and standard
deviation of 0.11 ± 4.56 mmHg and 0.05 ± 2.82 mmHg for
SBP and DBP, respectively. The mean error for each approach
is approximately 0 mmHg. When using our transfer learning
approach, the SD of errors decreases from 5.49 to 4.56 mmHg
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TABLE III
COMPARISON OF TRANSFER LEARNING PERFORMANCE WHEN FINETUNING

DIFFERENT NETWORK LAYERS

and 3.24 to 2.82 mmHg for SBP and DBP, respectively. While
both approaches satisfy the AAMI standard, our transfer learning
approach achieves the requirement by a larger margin.

Table III compares the transfer learning performance when
different sets of network layers are finetuned using target patient
data. We use the first 10 patients in our dataset as target patients
for this experiment. The source model is pre-trained with the
last 50 patients’ data. These results are averaged over the 10
target patients. Evidently, retraining only the final convolution
layer (Conv3) and fully connected layer (FC2) results in the
best transfer learning performance. If the Conv3 layer is not
personalized, the SBP MAE increases from 3.84 to 4.41 mmHg
and the DBP MAE increases from 2.24 to 2.63 mmHg. This
demonstrates the importance of personalizing the last convolu-
tional layer in order to learn higher level features specific to the
individual. One interesting observation is that, on average, it is
better not to retrain the GRU with the target data. The average
SBP and DBP MAEs when finetuning the GRU layer with the
Conv3 and FC2 layer are 3.90 and 2.28 mmHg, respectively. If
the GRU is not personalized, the average SBP and DBP MAEs
are 3.84 and 2.24 mmHg, respectively. This may be because the
GRU is modeling the temporal relationship between features,
and not the features themselves. This indicates that the temporal
modeling of PPG features is transferable across individuals in
addition to the lower-level convolutional filters.

Table IV compares the transfer learning performance when
different numbers of source patients are used for pretraining the
initial model. Like the previous experiment, we use the first 10
patients in our dataset as target patients for this experiment and
the results are averaged over these patients. We compare the
transfer performance when using 10, 30, 50, 70, and 90 source
patients for pretraining. We finetune the “Conv3, FC2” layer set
during the transfer learning step. We observe that the MAEs for
SBP and DBP decrease as more source patients are included but
level off at 50 patients. The MAEs for SBP estimation when
using 50, 70, and 90 source patients are 3.84, 3.85, and 3.85
mmHg, respectively. The MAEs for DBP estimation when using

TABLE IV
COMPARISON OF TRANSFER LEARNING PERFORMANCE WHEN PRETRAINING

WITH DIFFERENT NUMBER OF SOURCE PATIENTS

50, 70, and 90 source patients are 2.24, 2.24, and 2.23 mmHg,
respectively. These results demonstrate that including more than
50 source patients does not enhance the transfer learning per-
formance. This indicates that there is sufficient variability and
information among 50 patients to learn effective transferable
features for PPG-BP estimation.

C. Effect of Training Set Size

Next, we discuss how our non-transfer and transfer learning
performances change based on the number of target patient train-
ing samples. We test the model performance using 5 different
amounts of personal training data: 3600, 1800, 360, 100, and
50 data samples. Since each input PPG segment is 5 seconds,
3600 samples correspond to 5 hours of data. For each case, the
validation and test sets are kept the same in order to ensure
a fair comparison. Figure 8 displays the relationship between
the number of training samples and SBP (left) and DBP (right)
estimation performance. The blue curves correspond to our
non-transfer approach, namely BP-CRNN, while the red curves
correspond to our transfer method, namely BP-CRNN-Transfer.
Each point is labeled with the number of training samples and
corresponding MAE. The black lines represent the performance
of the dummy Mean Regressor, which always predicts the mean
SBP and DBP of the target patient’s training set. Again, we use
the Mean Regressor’s performance as a reference to ensure our
model is learning more than simply estimating with the patient’s
mean SBP and DBP.

Evidently, using transfer learning improves performance for
each number of training samples. As the number of training
samples is reduced, the MAE increases for both approaches, but
at a lower rate when utilizing transfer learning. When training
with 100 data samples using the non-transfer approach, the MAE
increases to 8.15 mmHg for SBP and 4.48 mmHg for DBP. In
this case, the error is approaching that of the Mean Regressor,
meaning the model has difficulty learning the PPG-BP relation-
ship. If further reduced to 50 training samples, the model is
unable to converge. This is why there is no point plotted for
50 samples when using our non-transfer approach. On the other
hand, when using 100 training samples, the performance of our
transfer learning approach for SBP and DBP is 5.52 and 3.38
mmHg, respectively. This corresponds to a 32.3% and 24.6%
performance improvement for SBP and DBP estimation when
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Fig. 8. BP estimation performance for different training set sizes. The labeled points for 360 and 3600 training samples indicate that our BP-
CRNN-Transfer method can achieve equivalent performance to the non-transfer BP-CRNN method with 10× less data.

using our transfer learning technique. By comparing the non-
transfer approach using 3600 samples to the transfer approach
using 360 samples, we can see that the MAE is similar for
SBP (4.59 vs. 4.56 mmHg) and DBP (2.72 vs. 2.80 mmHg)
estimation. This indicates that 10× less personal PPG-BP data
is required by our proposed transfer learning approach to achieve
performance equivalent to that of a new personalized model
trained with abundant data. For 50 training samples the model is
able to converge using transfer learning, resulting in a MAE of
5.86 mmHg for SBP and 3.59 mmHg for DBP. The cuff-based
standard is a MAE of ≤5 mmHg for both SBP and DBP [37].
Hence, our transfer learning technique satisfies this requirement
for DBP and misses this requirement by 0.86 mmHg for SBP,
when using 50 training samples. These results demonstrate that
accurate personalized models can be trained even with limited
personal PPG and BP data.

D. Bland-Altman and Correlation Analysis

Bland-Altman analysis is a technique for comparing a new
measurement device or procedure to an approved method [38].
The goal is to assess the extent to which two methods designed
to measure the same parameter are in agreement. Here, the
two methods for BP measurement being compared include the
invasive arterial catheter and our BP-CRNN-Transfer model.
The difference in measurements between these two methods is
plotted against the average measurement of the two devices. The
difference between methods and mean of methods are calculated
for each data sample using Eq. (7) and (8), respectively.

BPdiff = BPcatheter −BPBP−CRNN (7)

BPmean =
BPcatheter +BPBP−CRNN

2
(8)

It is common to compute the 95% limits of agreement between
measurement methods. These limits are defined as the average
difference between measurement methods (blue dashed line
in Figure 9) ± 1.96 ∗ standard deviation of the differences
between measurement methods (red-dashed lines in Figure 9).
For two methods to be considered comparable, Bland-Altman
recommends that 95% of the samples should fall within these

limits (red dashed lines). Among all 100 patients, 86% and
93% achieve this agreement for SBP and DBP measurement,
respectively.

We also carry out Pearson correlation analysis [39] separately
for each of the 100 patients to compare our method’s estimated
BP to the reference BP. The Pearson-R correlation coefficient
is a measure of how linearly correlated two sets of data are.
When using our non-transfer approach, the average and standard
deviation of the Pearson-R coefficient is 0.83 ± 0.10 and 0.73
± 0.17 for SBP and DBP, respectively. When using our transfer
learning approach, the average and standard deviation of the
Pearson-R coefficient is 0.90±0.06 and 0.82±0.12 for SBP and
DBP, respectively. This increase in correlation again shows the
ability of transfer learning to improve estimation performance.

Since it is not possible to show individual plots for each pa-
tient, we provide plots for one patient whose Pearson correlation
is similar to the average correlation across all patients. Figure 9
displays both the Bland-Altman and correlation plots for SBP
and DBP for this patient. 95.1% of the SBP differences and
95.6% of the DBP differences fall within the Bland-Altman
limits of agreement. The correlation between estimated and
reference BPs is 0.9 and 0.85 for SBP and DBP, respectively.
These results demonstrate a high level of agreement between
our model’s estimated BP and the invasively measured BP from
the arterial catheter.

E. Investigating Source Patient Selection

In this section, we discuss findings regarding source patient
selection for individual target patients. Table IV compares results
when using different numbers of source patients, however, these
results represent an average and do not capture performance vari-
ations at the individual patient level. The goal of this experiment
is to determine whether there are optimal smaller sets of source
patients for individual target patients.

In order to determine the effect of using different source
patients for individual target patients, multiple models are pre-
trained. Table V displays the results for 3 different target patients,
using 3 different pre-trained models for transfer learning. Model
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Fig. 9. Bland-Altman and Pearson correlation analysis for one patient used to assess agreement between BP measurement methods. Plots (a)
and (b) display Bland-Altman analysis for SBP and DBP, respectively. The red-dashed lines correspond to the average difference ± 1.96 ∗ standard
deviation of differences. Plots (c) and (d) display the correlation between estimated and reference SBPs and DBPs, respectively.

TABLE V
TRANSFER PERFORMANCE OF DIFFERENT PRETRAINED MODELS.

1 represents the same initial model used in the previous experi-
ments pre-trained with 50 source patients. Models 2 and 3 were
pre-trained using different random sets of 10 source patients.
For this experiment, 50 samples from the target patient are used
to finetune each model.

On average, pretraining with 50 source patients (shown in
Table IV) is better than pretraining with 10 source patients.
However, for individual target patients, there may be certain
smaller sets of source patients that result in better transfer
learning performance, as shown in Table V. This performance
increase can be significant, especially seen for Patient 2. Model
3 (pre-trained with 10 source patients) performs 13.9% and

11.6% better for SBP and DBP estimation compared to Model 1
(pre-trained with 50 source patients) for this target patient. These
results indicate that transfer learning performance can be further
improved by selecting a specific subset of source patients for
individual target patients. In future work, we plan to investigate
this idea of intelligent source patient selection for improving
transfer learning performance.

IV. CONCLUSION

In this paper, we present an effective hybrid network archi-
tecture for personalized BP estimation using the PPG signal.
In order to reduce the number of personal PPG-BP samples re-
quired for training, we provide a novel transfer learning approach
that personalizes specific layers of the network. Our method is
tested over a demographically diverse set of patients, and our
estimation performance achieves the BHS and AAMI standards.

In this study, the training and inference are implemented on
a personal computer. For future work, we will investigate a
light-weight BP estimation model which can be implemented
directly on a wearable device that collects PPG data while
providing comparable performance to our current work. This
will provide more real-time measurements and address concerns
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regarding data transmission and data privacy. BP measurement
based on the PPG signal will enable a deeper understanding of
how BP changes throughout the day, allowing the user to make
adjustments in order to reach and maintain a healthy BP.
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