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Motion Prediction and Pre-Rendering at the Edge to Enable
Ultra-Low Latency Mobile 6DoF Experiences

Xueshi Hou, Student Member, IEEE, Sujit Dey, Fellow, IEEE
As virtual reality (VR) applications become popular, the desire to enable high-quality, lightweight, and mobile VR can potentially

be achieved by performing the VR rendering and encoding computations at the edge and streaming the rendered video to the VR
glasses. However, if the rendering has to be performed after the edge gets to know of the user’s new head and body position, the
ultra-low latency requirements of VR will not be met by the roundtrip delay. In this paper, we introduce edge intelligence, wherein
the edge can predict, pre-render and cache the VR video in advance, to be streamed to the user VR glasses as soon as needed. The
edge-based predictive pre-rendering approach can address the challenging six Degrees of Freedom (6DoF) VR content. Compared
to 360-degree videos and 3DoF (head motion only) VR, 6DoF VR supports both head and body motion, thus not only viewing
direction but also viewing position can change. Hence, our proposed VR edge intelligence comprises of predicting both the head and
body motions of a user accurately using past head and body motion traces. In this paper, we develop a multi-task long short-term
memory (LSTM) model for body motion prediction and a multi-layer perceptron (MLP) model for head motion prediction. We
implement the deep learning-based motion prediction models and validate their accuracy and effectiveness using a dataset of over
840,000 samples for head and body motion.

Index Terms—Virtual reality, video streaming, six Degrees of Freedom (6DoF), edge computing, edge intelligence, motion prediction.

I. INTRODUCTION

VIRTUAL reality (VR) systems have triggered enormous
interest over the last few years in various fields in-

cluding entertainment, enterprise, education, manufacturing,
transportation, etc. However, several key hurdles need to
be overcome for businesses and consumers to get fully on
board with VR technology [1]: cheaper price and compelling
content, and, most importantly, a truly mobile VR experience.
Of particular interest is how to develop mobile (wireless
and lightweight) head-mounted displays (HMDs), and how to
enable VR experience on the mobile HMDs using bandwidth-
constrained mobile networks, while satisfying the ultra-low
latency requirements.

Currently, there are several categories of HMDs [2]: PC
VR, standalone VR, and mobile VR. Specifically, PC VR
has high visual quality with rich graphics contents as well
as high frame rate, but the HMD is usually tethered with
PC [3], [4]; standalone VR HMD has a built-in processor and
is mobile, but may have relative low-quality graphics and low
refresh rate [5], [6]; mobile VR is with a smartphone inside,
leading to a heavy HMD to wear [7], [8]. Therefore, current
HMDs still cannot offer us a lightweight, mobile, and high-
quality VR experience. To solve this problem, we propose an
edge computing based solution. By performing the rendering
on an edge computing node and streaming videos to users,
we can complete the heavy computational tasks on the edge
computing node and thus enable mobile VR with lightweight
VR glasses. The most challenging part of this solution is
ultra-high bandwidth and ultra-low latency requirements, since
streaming 360-degree video causes tremendous bandwidth
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Fig. 1. Illustration of rendering and streaming pipeline to show how
our predictive pre-rendering approach reduces latency: (a) Without
encoding and decoding; (b) With encoding and decoding.

consumption and good VR user experiences require ultra-low
latency (<20ms) [9], [10].

Specifically, the total end-to-end latency of edge computing
based VR system includes the following parts: time to transmit
sensor data from HMD to edge computing node, time to
render (and encode) on the edge node, time to transmit
rendered video from the edge computing node to HMD, and
time to (decode and) display the view on the HMD. The
encoding and decoding are optional according to the specific
application design. Once the user moves his/her head or body
position, high-quality VR requires this end-to-end latency as
less than 20ms [9], [10] to avoid motion sickness. For the
edge computing based VR system, it is extremely challenging
to meet this requirement.

Motivated by the ultra-low latency requirement challenge,
in this paper, we introduce edge intelligence for mobile VR,
wherein the edge can predict, pre-render and cache the VR
video in advance, to be streamed to the user VR glasses
as soon as needed. Specifically, we consider six Degrees of
Freedom (6DoF) VR experiences, which support both the
head and body motions, thus both the viewing direction and
viewing position can change. Hence, in order to pre-render
the view, edge intelligence is needed to predict both the
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Fig. 2. Field of view (FOV) in a 360-degree view.

head and body motions of a user accurately. By predicting
head and body motion of users in the near future with edge
intelligence, we can do a predictive pre-rendering on the
edge computing node and then stream (even pre-deliver) the
predicted view to the HMD. The difference between stream
and pre-deliver is that stream means holding the pre-rendered
frame until determining whether prediction is ’correct’ or not
using the actual motion, while pre-deliver refers to sending
the pre-rendered frame immediately to the user without this
determination. Note that both stream and pre-deliver choices
can significantly reduce latency: one does pre-rendering and
the other does both pre-rendering and pre-delivery. The latter
reduces more latency than the former but (i) needs a technique
on HMD to buffer the predicted view and determine whether
the predicted viewing position and direction are correct; (ii)
transmits extra content when the prediction is inaccurate,
leading to more bandwidth consumption. Hence, we adopt the
former method, where the latency can be significantly reduced
since the pre-rendered view will be transmitted if the predicted
viewing position and direction are ’correct’ (i.e., the error is
less than a given ultra-low value); otherwise, latency remains
the same with traditional streaming method because the actual
view will be rendered and transmitted to the HMD. Fig. 1
illustrates the latency reduced by our pre-rendering approach
compared to the traditional approach, in terms of rendering
and streaming pipeline (from edge computing node to HMD).
The key to achieving this efficient edge-based predictive pre-
rendering approach is predicting body and head motion in
advance accurately, and then pre-rendering the predicted view
accordingly.

In our earlier work [11], we proposed techniques for head
motion prediction in 360-degree videos and three Degrees of
Freedom (3DoF) VR applications. In this work, we address the
more challenging 6DoF VR content. Compared to 360-degree
videos and 3DoF (head motion only) VR, 6DoF VR supports
both head and body motions, thus not only viewing direction
but also viewing position changes. Hence, our proposed VR
edge intelligence has to comprise of predicting both the head
and body motions of a user accurately using past head and
body motion traces. Specifically, for head motion prediction
in 360-degree videos and 3DoF VR, a certain prediction error
is allowed, because the error can be handled by delivering
a larger field of view (FOV) with high quality or rendering
larger FOV. Note that FOV is around 90◦×90◦ for Samsung
Gear VR and 110◦×110◦ for HTC Vive while the 360-degree
view is 360◦×180◦ in size (as is shown in Fig. 2). Compared
to 360-degree videos and 3DoF VR, the motion prediction in
6DoF VR is much more challenging, where the body motion

prediction needs high precision to pre-render the user’s view
(otherwise may cause dizzy feeling). For 360-degree videos
and 3DoF VR, the 360-degree view at a time point is known
and unchanged by any head motion, but for 6DoF VR it can
be totally different due to the body motion. Therefore, this
paper will explore the feasibility of doing motion prediction
with high precision in 6DoF VR using edge intelligence, and
its main contributions can be summarized as follows:
• For 6DoF VR applications, we propose a new edge-based

predictive pre-rendering approach involving both body
and head motion prediction, in order to enable high-
quality, lightweight, and mobile VR with low latency.

• We develop a prediction method using edge intelligence
to predict where a user will be standing (i.e., viewing
position) and looking into (i.e., viewing direction) in the
360-degree view based on their past behavior. Using a
dataset of real head and body motion traces from VR
applications, we show the feasibility of our multi-task
long short-term memory (LSTM) model for body motion
prediction and multi-layer perceptron (MLP) model for
head motion prediction with high precision.

• We propose a FOV selection technique for pre-rendering
a larger FOV to further reduce head motion prediction
error, and a motion error determination technique as
the system mechanism of our edge-based predictive pre-
rendering approach.

• To the best of our knowledge, we are the first to come
up with this edge-based predictive pre-rendering idea
using edge intelligence for 6DoF VR applications and
show good results on a real motion trace dataset in the
VR applications. We demonstrate the potential of our
approach with high accuracy of head and body motion
prediction.

Note that a preliminary version of our work has been
published in [12], where we reported on edge-based predictive
single-task models for head (MLP model) and body (LSTM
model) motions, and some preliminary results. In this article,
we develop (i) a new multi-task LSTM model for body motion
prediction to reduce body motion prediction error, (ii) head and
body motion prediction based FOV selection for pre-rendering,
such that the selected FOV minimizes the effects of motion
prediction error while also minimizing the selected FOV size,
and (iii) motion error determination as the system mechanism
of our edge-based predictive pre-rendering approach. Note that
the methodology proposed in this paper applies to single-user
scenarios, and we plan to further study more complex multi-
user scenarios as part of future work.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents a system overview
and problem definition. Section IV describes our dataset. The
methodology for head and body motion prediction is described
in Section V. We present our experimental results in Section VI
and conclude our work in Section VII.

II. RELATED WORK

In this section, we review current work in the following
topics related to our research.
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Enable High-Quality Mobile VR: Some recent stud-
ies [13]–[17] explore solutions to enable lightweight and
mobile VR experiences, and improve the performance of the
current VR system. To provide high-quality VR on a mobile
device, [13] presents a pre-rendering and caching design called
FlashBack, which pre-renders all possible views for different
positions as well as orientations at each 3D grid point with a
density of 2-5cm, stores them on a local cache, and delivers
frames on demand according to current position and orien-
tations. This method may lead to high inaccuracy and over-
whelming storage overhead of pre-caching all possible views
(e.g., 50GB for an app). [14] introduces a parallel rendering
and streaming mechanism to reduce the add-on streaming
latency, by pipelining the rendering, encoding, transmission,
and decoding procedures. This method focuses on minimizing
streaming latency, thus the latency for rendering part remains
the same as the traditional rendering method. [15] presents
a collaborative rendering method to reduce overall rendering
latency by offloading costly background rendering to an edge
computing node and only performing foreground rendering on
the mobile device. In contrast, our method proposes to pre-
render based on head and body motion predictions, reducing
the latency of rendering more drastically. To reduce latency
needed, [16] proposes to stream VR scenes containing only
the user’s FOV and a latency-adaptive margin area around the
FOV. [17] aims to address the ultra-high bandwidth challenge
in high-quality mobile VR by adaptively reusing the redundant
VR pixels across multiple VR frames. The reason these
two methods cannot be applied to our scenario is that [16]
cannot address 6DoF VR content and [17] reduces network
transmission latency to some extent but also brings the larger
rendering latency.

Human Motion Prediction: Learning statistical models of
human motion are challenging due to the stochastic nature
of human movement to explore the environment, and many
works [18]–[22] propose methods to address it. Based on
classical mechanics, there are some studies [18]–[20] showing
the efficiency of linear acceleration model (Lin-A) by doing
motion prediction or estimation with an assumption of linear
acceleration, especially in a small time interval (e.g., order of
tens of milliseconds). [18] describes a good performance of a
simple first-order linear motion model for tracking human limb
segment orientation, and [19], [20] reveal acceptable results
when employing the linear model as a baseline to predict
human trajectory. Meanwhile, deep learning approaches [19]–
[22] for human body prediction have also achieved remarkable
accomplishments. Specifically, [19], [20] propose their LSTM
models to predict human future trajectories, but their models
aim to learn general human movement from a massive number
of videos and the corresponding precision of predicted position
does not achieve the requirement of pre-rendering in VR
scenarios. [21], [22] propose various recurrent neural network
(RNN) models for human motion prediction to learn human
kinematics from skeletal data. But these models are designed
to learn the patterns from a series of skeletal data and cannot
be applied to our VR scenarios directly.

Moreover, [11], [23]–[25] also explore the feasibility of
doing head motion prediction, however, head motion predic-

tion in 6DoF is quite different than 360-degree video (3DoF),
since in the latter, for each time point, the whole 360-degree
view displayed for viewers is fixed and more regularity and
pattern exist in their viewing directions. By learning viewers’
traces, for 3DoF applications, the models can well predict
the viewing position since at a certain time point, there are
always some areas attracting most attention and viewers are
more likely to look at them. Head motion in 6DoF is more
difficult to predict because both position and viewing direction
may continuously change, and there is a much larger virtual
space to explore for users. Therefore, the above approaches
cannot be used to address our scenario: we aim to explore
the high-precision human body and head motion prediction in
6DoF VR applications for pre-rendering.

Multi-task Learning: Multi-task learning aims to improve
learning efficiency and prediction accuracy for each task,
compared to training a separate model for each task. Some re-
cent studies [26]–[28] explore solutions to improve prediction
accuracy by learning multiple tasks from a shared represen-
tation, and formulate the multi-task learning problems which
involve joint learning of various regression and classification
tasks with different units and scales. [26] shows that a shared
representation with multi-task learning can improve accuracy
on depth regression and instance segmentation over separately
trained single tasks because of cues from other tasks. [27]
presents that multi-task learning benefits and achieves better
results compared with single-task models on event detection
in social media by doing text analysis with Twitter datasets.
[28] proposes a multi-task RNN for simultaneous recognition
of surgical gestures with kinematic signals, and demonstrates
that the recognition performance improves with the multi-task
learning model compared with single-task models. The reason
why we cannot use above methods for body motion is that
most of these methods [26], [28] address computer vision
recognition problem instead of predicting variables ahead of
time and [27] considers event detection based on texts in social
media which also cannot be applied to body motion prediction
scenario. Our proposed multi-task model distinguishes from
the above methods by addressing the real-time body motion
prediction problem using real motion traces in the VR scenario
and aiming for an ultra-low prediction error.

III. SYSTEM OVERVIEW

In this section, we describe our system overview. In Fig. 3,
a user’s head motion, body motion as well as other controlling
commands will firstly be sent to the edge, which performs the
edge-based predictive pre-rendering approach. Based on the
past few seconds of head motion, body motion and control data
received from the user, the edge device will do three things:
(i) perform motion prediction (motion prediction); (ii) do pre-
render based on the predicted viewing position and direction
(motion decision and pre-rendering); (iii) cache the predicted
frames in advance. Later, if the predicted viewing position
and direction are ’correct’ (i.e., the error is less than a given
ultra-low value), the cached predicted frames can be streamed
from the edge device to the HMD and displayed on HMD
immediately; otherwise, the actual view will be rendered by
the edge device and transmitted to the HMD. For the former
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Fig. 3. System overview.

case, latency needed will be significantly reduced since the
view is pre-rendered and cached on the edge computing node
before it is needed; for the latter, latency remains the same
with the conventional method of streaming from the edge
computing node. Note that although the controller can affect
the rendered frame by pointing at a certain place to teleport in
virtual space, we do not need to predict for the new location
triggered by the controller, as in this case, users will expect
much larger latency than 20ms. We will describe motion
prediction, FOV selection, and motion error determination
(highlighted in green in Fig. 3) with more details in Section V.

Note that the edge device can be either a Mobile Edge
Computing node (MEC) in the mobile radio access or core
network, or a Local Edge Computing node (LEC) located in
the user premises or even his/her mobile device, connecting
to the HMD through WiFi or WiGig. While each of the above
choices has tradeoffs, this paper will not specifically address
these tradeoffs and select either MEC or LEC. Instead, we
focus on developing accurate head and body motion prediction
techniques, which can be used for the edge-based predictive
pre-rendering approach shown in Fig. 3, and will apply to
either of the edge device options.

Problem Statement: In each time point, the user can have a
specific viewing position and viewing direction, corresponding
to the body and head motion. Given previous and current
viewing directions and viewing positions, our goal is to predict
viewing direction and position for the next time point. After
rendering pixels based on predicted viewing position and di-
rection, frames can be further encoded to a video and delivered
to users. Specifically, we describe the problem formulation for
motion prediction below. The notations used in our approach
are described in Table I.

A. Problem Formulation

Trajectory Sequence: Spatiotemporal point qt is a tu-
ple of time stamp t, viewing position b, and view-
ing direction h, i.e., qt = (t, b, h). The trajectory se-
quence from time point tw to time point tw+n−1 is a
spatiotemporal point sequence, which can be denoted as
S(tw, tt+n−1) = qtwqtw+1

. . . qtw+n−1
.

Thus, the problem can be formulated as follows:

TABLE I
NOTATIONS USED.

Notation Meaning
t Timestamp (time counted since application launches)

RTT Round-trip latency
(α, β, γ) Euler angles for head pose (pitch α, yaw β, roll γ)
(x, y, z) Position for body pose
~vhead Head motion speed (vα, vβ , vγ )
~vbody Body motion speed (vx, vy , vz)
dhead Angular distance between actual and predicted head poses
dbody Distance between actual and predicted body positions

dα, dβ , dγ dhead in α, β, γ-axis
dx, dy , dz dbody in x, y, z-axis
ε1, ε2 Thresholds of acceptable head and body prediction errors
Li Objective loss function for individual task i
wi Weight for individual task i

Ltotal Loss function for multi-task learning model
θh, θv Horizontal FOV and vertical FOV
θ′h, θ

′
v Selected new horizontal FOV and vertical FOV

nw Number of frames in a sliding window in FOV selection
d̂α, d̂β , d̂γ Estimated value of dα, dβ , dγ in FOV selection
I1, I2 Two grayscale intensity images
Idif (i) Difference between two intensity images for pixel i
Rdif Percentage of mismatched pixels
Ndif Number of pixels having difference in grayscale intensity

Nframe Total number of pixels per frame

- Input: a trajectory sequence from time
point tw to time point tw+n−1, i.e.,
S(tw, tt+n−1) = qtwqtw+1 . . . qtw+n−1 ;

- Output: predicted spatiotemporal point q̂tw+n at time
point tw+n;

In this paper, we aim to predict the viewing position b and
viewing direction h for the next time point using current and
previous viewing positions and directions.

B. Time Analysis

In this subsection, we give an analysis of the time taken
for the various tasks of our proposed edge-based predictive
pre-rendering method, as shown in Table II. Specifically, we
can see that the latency for transmission from HMD to the
edge and from edge to HMD depends on the distance between
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Fig. 4. Illustration of two virtual applications and other settings: (a) Virtual Museum and (b) Virtual Rome; (c) Boundary of walkable area,
and coordinates for head and body motions.

TABLE II
TIME NEEDED FOR DIFFERENT PROCEDURES.

Procedure Time Needed
Transmission from HMD to edge Depends on distance

Rendering 5ms− 10ms

Encoding 3ms− 8ms

Transmission from edge to HMD Depends on distance
Decoding ≈ 3ms

Motion Prediction & FOV Selection < 1ms

them. Since we predict the user view 11ms in advance (1
frame ahead, assuming 90 frames/second), we have adequate
time to (i) predict motion and do FOV selection (i.e., < 1ms,
which is described in details in Section VI.D) and (ii) pre-
render the predicted view (i.e., 5ms− 10ms) in advance with
no additional latency, hence satisfying the ultra-low latency
requirement of 6DoF VR immersive experiences. The round-
trip transmission latency, latency of rendering, latency of
encoding, and latency of decoding can be denoted as RTT ,
Trendering, Tencoding , and Tdecoding respectively.

As for the conventional method, the latency without motion
prediction and pre-rendering is

RTT + Trendering + Tencoding + Tdecoding,

where the lower boundary and upper boundary of latency are
RTT + 11ms and RTT + 21ms respectively. Thus, given
added round-trip transmission latency of around 9ms, the end-
to-end latency for conventional method is 20ms− 30ms.

For our proposed edge-based predictive pre-rendering ap-
proach, the latency with ’correct’ motion prediction is

RTT + Tencoding + Tdecoding,

where the lower boundary and upper boundary of latency
are RTT + 6ms and RTT + 11ms respectively. Otherwise,
when the motion prediction is not ’correct’, the latency is the
same with conventional method. Thus, given added round-
trip transmission latency of around 9ms, the end-to-end la-
tency for the proposed edge-based predictive pre-rendering
approach is 15ms−20ms with ’correct’ motion prediction and
20ms− 30ms with ’incorrect’ motion prediction. We present
experimental results in Section VI which shows high accu-
racy of our proposed motion prediction techniques, achieving
’correct’ motion predictions in most of the time points during
6DoF VR applications.

IV. DATASET AND ITS CHARACTERISTICS

In this section, we first describe the dataset we use and
then show characteristics of the dataset using certain metrics
we define.

TABLE III
EXPERIMENTAL SETTINGS FOR DIFFERENT SESSIONS IN THE VIRTUAL

MUSEUM AND VIRTUAL ROME.

Session Virtual Museum (VM) Virtual Rome (RM)
VM1 VM2 VM3 RM1 RM2 RM3

With Guidance 4 4

Use Controller 4 4

A. Dataset
To investigate head and body prediction in 6DoF VR appli-

cations, we conduct our study on a real motion trace dataset
we collected from 20 users using HTC Vive to experience
two 6DoF VR applications called Virtual Museum [29] and
Virtual Rome [30] in our laboratory. The system setup will
be described in Section VI.A. The trace consists of 840,000
sample points of head and body motion data collected from the
users. Fig. 4(a)(b) show the illustration of the two virtual ap-
plications, where Virtual Museum has three exhibition rooms
and Virtual Rome contains larger space including different
courtyards and halls. The walkable area is restricted by the
size of the tracked space in the room and constrained to a
fixed regular shape. Users can explore each virtual space by
walking in the walkable area or teleporting by pointing at a
place with a controller. The top subplot in Fig. 4(c) uses light
blue lines to show the boundary of the walkable area in the
VR. As shown in Table III, we set three sessions respectively
for each application: (i) in session 1, users are given rough
guidance of taking a stroll about the room at the beginning of
the session, without a controller in their hand; (ii) in session
2, users walk around freely in the room, without a controller
in their hand; (iii) in session 3, users walk around freely in the
room and have a controller in their hand; the controller allows
them to teleport to any position in virtual space by pointing at
that place, and the position of the walkable area in VR also
changes accordingly.

Motion traces include the user ID, session timestamp, euler
angles for the head pose (pitch α, yaw β, roll γ), and position
for body pose (x, y, z). The session timestamp refers to the
time counted since application launches in milliseconds, and
timestamps appear each 11ms (corresponding to 90Hz, which
is the refresh rate of HTC Vive). The middle and bottom
subplots of Fig. 4(c) exhibit the coordinates for head pose
using euler angles and for body pose using position.

B. Dataset Characteristics

To depict key characteristics of the head motion and
viewpoint changes in the dataset quantitatively, we offer the
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Fig. 5. CDF of motion speed for different sessions: (a)(b)(c) for body
motion; (d)(e)(f) for head motion.

following definitions.
Head Motion Vector: The corresponding head poses at

time points t1 and t2 (where t1 < t2) are denoted
by (α(t1), β(t1), γ(t1)) and (α(t2), β(t2), γ(t2)) respectively.
Head motion vector (4α,4β,4γ) = (α(t2)−α(t1), β(t2)−
β(t1), γ(t2)− γ(t1)).

Head Motion Speed: Head motion speed ~vhead is defined
as the angular distance the head moved divided by time, i.e.,
~vhead = (vα, vβ , vγ) = ( 4αt2−t1 ,

4β
t2−t1 ,

4γ
t2−t1 ).

Body Motion Vector: The corresponding body poses at
time points t1 and t2 (where t1 < t2) are denoted
by (x(t1), y(t1), z(t1)) and (x(t2), y(t2), z(t2)) respectively.
Body motion vector (4x,4y,4z) = (x(t2)− x(t1), y(t2)−
y(t1), z(t2)− z(t1)).

Body Motion Speed: Body motion speed ~vbody is defined
as the distance the body moved divided by time, i.e., ~vbody =
(vx, vy, vz) = ( 4xt2−t1 ,

4y
t2−t1 ,

4z
t2−t1 ), and the value of it is

vbody = |~vbody| =
√
vx2 + vy2 + vz2. (1)

TABLE IV
DESCRIPTION OF VARIABLES.
Variable Seq. Unit

Measured
Timestamp 4 Millisecond (ms)

Euler angles 4 Degree (◦)
Position 4 Meter (m)

Derived
Head Motion Speed 4

Degree per
Millisecond (◦/ms)

Body Motion Speed 4
Centimeter per

Millisecond (cm/ms)

Table IV presents the description of variables. Apart from
measured variables in the dataset, for each sample point, we
can obtain the derived variables including head motion speed
and body motion speed using definitions above. In Fig. 5, we
plot the cumulative distribution function (CDF) of body mo-
tion speed in each axis (i.e., vx, vy, vz) and head motion speed
in each axis (i.e., vα, vβ , vγ) for different sessions. We can see
that (i) over 95% of vx, vy, vz are less than 0.8m/s, 0.8m/s, and
0.15m/s respectively, and around 90% of vα, vβ , vγ are less
than 30◦/s, 100◦/s, and 25◦/s respectively; (ii) for the body mo-
tion speed distribution, the speed in each session is as follow

from high to low: RM1>VM1>RM2>VM2>VM3>RM3;
and (iii) for the head motion speed distribution, the
speed in each session is as follow from low to high:
VM1<RM1<RM2&VM2<RM3&VM3. Thus among six ses-
sions of two applications, there are more body motion and less
head motion in Session 1 (i.e., RM1, VM1) while less body
motion and more head motion in Session 3 (i.e., RM3, VM3).

V. OUR APPROACH

In this section, we describe our proposed approach of
preprocessing and modeling for head and body motion pre-
dictions.

A. Preprocessing

We aim to remove noise within head and body motion in
the preprocessing step. We first calculate head motion speed
and body motion speed for each time point. Fig. 6 presents
the body motion and head motion speed in x, y, z, α, β, γ-axis
respectively for a sample in the motion trace of one user in
the Virtual Museum application. The blue line in each subplot
shows there can be at times significant noise in each of motion
speed, due to sensor noise and other measuring errors from
HTC Vive HMD and base stations. This noise is identifiable
since the speed cannot change so rapidly and intensively within
several milliseconds. To remove the noise in body motion
and head motion, we propose to use the Savitzky-Golay filter
method [31] because of its high accuracy and efficiency. This
filter approximates (using least-square fitting) the underlying
function within the moving window by a polynomial of a
higher order. The blue and red lines in Fig. 6 show the speed
before and after the preprocessing step. We can see the noise
is significantly reduced after preprocessing step.

B. Predictive Modeling

To represent motion features, we select 60 time points as
the prediction time window (i.e., predict head and body speed
according to speed traces in the latest 60 time points), since
it achieves better performance than 40, 50, 70, 80, 90 time
points based on our experiments. For training the model, we
choose a simple representation for motion as a 1×60 vector,
where each element equals to i when the speed is i at that
time point, and the dimension of 60 corresponds to 60 time
points.

1) Single-task Model
We investigate a LSTM model as well as an MLP model

to be trained for single task separately, where the single task
refers to prediction for body motion speed in each axis (i.e.,
x, y, or z-axis) or head motion speed in each axis (i.e., α, β,
or γ-axis).

LSTM Model: Inspired by the success of the RNN
Encoder-Decoder in modeling sequential data [32] and good
performance of LSTM to capture transition regularities of hu-
man movements since they have memory to learn the temporal
dependence between observations [19], [33], we implement
an Encoder-Decoder LSTM model which can learn general
body motion as well as head motion patterns, and predict the
future viewing direction and position based on the past traces.
Fig. 7(a) shows the LSTM model we designed and used in
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Fig. 6. Motion speed obtained before and after the preprocessing step: (a)(b)(c) for body motion; (d)(e)(f) for head motion.
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our training, where first and second LSTM layers both consist
of 60 LSTM units, and the fully connected layer contains 1
interconnected node. Note the interconnected node refers to
the general neuron-like processing unit a = φ(

∑
j wjxj + b),

where xj are the inputs to the unit, wj are the weights, b is
the bias, φ is the nonlinear activation function, and a is the
unit’s activation [34].

Our Encoder-Decoder LSTM model predicts what the mo-
tion speed will be for next time point, given the previous
sequence of motion speed. The outputs are the values of
predicted speed for next time point. Note that the settings
including 60 LSTM units and 60 time points as window length
are selected during experiments and proved to be good by
empirical results. For the head and body motion prediction,
we use the mean square error (MSE) as our loss function:

Loss =
1

|Ntrain|
∑

y∈Strain

L∑
t=1

(yt − ŷt)2, (2)

where |Ntrain| is the number of total time steps of all
trajectories on the train set Strain, and L is the total length of
each corresponding trajectories. The proposed LSTM model
learns parameters by minimizing the mean square error.

Specifically, encoder and decoder sections work as follows.
Given the input sequence X = (x1, . . . ,xt, . . . ,xT ) with
xt ∈ Rn, where n is the number of driving series (e.g.,
dimension of feature representation), the encoder learns a
mapping from xt to ht with

ht = f(ht−1,xt), (3)

where ht ∈ Rm is the hidden state of the encoder at time
t, m is the size of the hidden state, and f is a non-linear
activation function of LSTM unit. As shown in Fig. 8, each
LSTM unit has (i) a memory cell with the cell state st, and
(ii) three sigmoid gates to control the access to memory cell
(forget gate ft, input gate it and output gate ot). We follow
the LSTM structure from [32], [35]:

ft = σ(Wf [ht−1;xt] + bf ), (4)
it = σ(Wi[ht−1;xt] + bi), (5)
ot = σ(Wo[ht−1;xt] + bo), (6)
st = ft � st−1 + it � (tanh(Ws[ht−1;xt] + bs)), (7)
ht = ot � tanh(st), (8)

where [ht−1;xt] ∈ Rm+n is a concatenation of the previous
hidden state ht−1 and current input xt. Wf , Wi, Wo, Ws ∈
Rm×(m+n) as well as bf , bi, bo, bs ∈ Rm are parameters to
learn. Notations of σ and � are the logistic sigmoid function
and element-wise multiplication. After reading the end of input
sequence sequentially and updating the hidden state as above,
the hidden state of LSTM is a summary (i.e., encoded vector
c) of the whole input sequence. Subsequently, the decoder is
trained to generate the target sequence (y1, . . . , yt, . . . , yT ) by
predicting yt given hidden state dt of LSTM units in decoder
at timestep t. Note that yt ∈ R, and dt ∈ Rp, where p is the
size of the hidden state in decoder. The update of hidden state
is denoted by

dt = f(dt−1, yt−1, c). (9)

Since the nonlinear function is the LSTM unit function,
similarly, dt can be updated as:

f ′t = σ(W ′f [dt−1; yt−1; c] + b′f ), (10)

i′t = σ(W ′i [dt−1; yt−1; c] + b′i), (11)
o′t = σ(W ′o[dt−1; yt−1; c] + b′o), (12)
s′t = f ′t � s′t−1 + i′t � (tanh(

W ′s[dt−1; yt−1; c] + b′s)), (13)
dt = o′t � tanh(s′t), (14)
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Fig. 9. Multi-task LSTM model for body motion prediction.

where [dt−1; yt−1; c] ∈ Rp+m+1 is a concatenation of the
previous hidden state dt−1, decoder input yt−1, and encoded
vector c. W ′f , W ′i , W ′o, W ′s ∈ Rp×(p+m+1) as well as b′f , b′i,
b′o, b′s ∈ Rp are parameters to learn. Subsequently, the output
of the decoder is further fed to the fully connected layer.

MLP Model: Apart from the LSTM model, we propose to
use an MLP [34] model presented in Fig. 7(b) to do motion
prediction. Using the same representation and loss function
described above, this model takes the motion speed during the
latest 60 time points as input to predict the motion speed for
next time point. The MLP model contains two fully-connected
layers with 60 and 1 interconnected nodes respectively for
training. The MLP model also learns parameters by minimiz-
ing the mean square error.

We build up single-task models including LSTM and
MLP models for body motion and head motion speed in
x, y, z, α, β, γ-axis respectively. Given the current and previ-
ous speed traces, our predictive models can predict the speed
for next time point and thus predict the viewing position b
and viewing direction h for next time point (described in
Section III.A).

2) Multi-task Model
Motivated by achieving better body motion prediction to

reduce the potential adverse effect on user experience caused
by prediction error, we explore more models to predict body
motion more accurately. Since single-task models in Sec-
tion V.B.1 predict body motion speed of each axis separately
(using the information in one axis), we explore multi-task
models to take advantage of body motion speed in all three
axes to predict the body motion for each axis. We investigate a
multi-task LSTM model as well as a multi-task MLP model,
sharing some layers to determine common features between
multiple tasks, where each task refers to the prediction for
body motion speed in each axis (i.e., x, y, or z-axis).

Multi-task LSTM Model: We implement a multi-task
LSTM model that can learn a shared representation for body
motion pattern, and predict the body motion speed (corre-
sponding to viewing position) for the next time point based on
the past traces. Fig. 9 shows our proposed multi-task LSTM
model that we have designed and used for training, where the
first three LSTM layers after the three motion features layers
consist of 60, 60, and 60 LSTM units (Fig. 8) respectively,
and the three fully-connected layers after a concatenate layer
contain 1, 1, and 1 interconnected node. Our multi-task LSTM
model predicts what the body motion speed in x, y and z-axis
will be for the next time point, given the previous sequence of
the body motion speed. The outputs are the values of predicted
speed (i.e., vx, vy , vz) for the next time point. Note that

the settings including 60 LSTM units and 60 time points as
window length are selected during experiments and proved to
be good by empirical results. For the body motion prediction,
we define the multi-task loss function as the weighted linear
sum of the losses for each individual task:

Ltotal =
∑
i

wiLi, (15)

where wi is the weight for individual task i and Li is the
single task loss function for individual task i (defined as
the MSE, which is described before in the LSTM model
subsection V.B.1). Specifically, as shown in Fig. 9, tasks 1,
2, and 3 refer to the prediction for body motion speed in
x, y, and z-axis respectively. In our training, we use w1 =
w2 = w3 = 0.333 as the task weight setting based on good
empirical performance and following theoretical observation.
Specifically, for body motion prediction, the distance between
actual body motion and predicted motion can be defined as

d =

√
dx

2 + dy
2 + dz

2, (16)

where dx, dy , dz are the distance between actual body motion
and predicted body motion in the x, y, z-axis respectively.
Thus, the theoretical observation is that with the setting of
w1 = w2 = w3, minimizing the multi-task learning loss func-
tion for body motion prediction is equivalent to minimizing
the square of distance d between the actual viewing position
(obtained from body motion) and predicted viewing position.
Note that the proposed multi-task LSTM and MLP models
learn parameters by minimizing the multi-task loss function.
Note that we have considered and conducted experiments
to models of sharing LSTM layer and fully-connected layer
between x, y, and z, but their performances are worse than
the performance of our proposed model (Fig. 9).

Multi-task MLP Model: Apart from the multi-task LSTM
model, we also implement a multi-task MLP model for
comparison to do body motion prediction. Using the same
representation and multi-task loss function described above,
this model also takes the body motion speed during the latest
60 time points in x, y, z-axis as input to predict the body
motion speed in the next time point. Our proposed multi-task
MLP model has a similar structure like the multi-task LSTM
model, shown in Fig. 10, where the first three fully-connected
layers after the three motion feature layers consist of 60, 60,
and 60 interconnected nodes respectively, and the three fully-
connected layers after a concatenate layer contain 1, 1, and 1
interconnected node. The multi-task MLP model predicts what
the body motion speed in x, y, and z-axis will be for the next
time point, given the previous sequence of the body motion.
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The outputs are values of predicted speed (i.e., vx, vy, vz) for
the next time point.

Given the current and previous speed traces, we build up our
multi-task models including multi-task LSTM and multi-task
MLP models to predict the body motion speed in three axes
for the next time point and thus predict the viewing position
b for the next time point (described in Section III.A).

C. FOV Selection

After predicting body and head motion, we propose a
sliding window based FOV selection method for pre-rendering,
such that the selected FOV minimizes the effects of motion
prediction error while also minimizing the selected FOV size.
This method is also head motion prediction based since it
selects the FOV size according to the estimated prediction
error calculated by recent head motion prediction errors. Note
that the method can only be applied to address head motion
error since body motion prediction error can only be reduced
by exploring better prediction models with higher precision
(e.g., multi-task models presented in Section V.B.2). Fig. 11
shows several different types of relative positions between
predicted FOV and actual FOV, where blue square, orange
square, and dashed green rectangle represent the actual FOV,
predicted FOV, and pre-rendered larger FOV. The size of FOV
is determined by the kind of HMD device, represented as
the horizontal FOV of θh times vertical FOV of θv (e.g.,
90◦×90◦ for Samsung Gear VR, 110◦×110◦ for HTC Vive).
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Fig. 11. Selected FOV for two different types of relative positions
between predicted FOV and actual FOV: (a) to address dα and dβ ,
(b) to address dγ .

Fig. 11(a) exhibits the angular distance between the actual
and predicted FOVs in α and β-axis as dα and dβ , with no
angular distance in the γ-axis. We can see that the actual FOV
can be covered by the pre-rendered larger FOV via increasing
the horizontal FOV to θh+2dβ and the vertical FOV to θv +
2dα. Fig. 11(b) demonstrates the angular distance between
the actual and predicted FOVs in the γ-axis as dγ without

any angular distance in α and β-axis. The actual FOV can
be covered by the pre-rendered larger FOV via increasing the
horizontal FOV to θh+2d2 and the vertical FOV to θv+2d1.
Since d1 ≤ dγ and d2 ≤ dγ (due to Pythagoras theorem [36])
shown in Fig. 11(b), in this case, we can select a larger FOV by
increasing the horizontal FOV to θh+2dγ and the vertical FOV
to θv+2dγ . This is the minimal increase in FOV size compared
to predicted FOV such that it minimizes adverse effects due to
head motion prediction error. Therefore, by selecting a larger
FOV of θh+2dβ+2dγ as horizontal FOV and θv+2dα+2dγ
as vertical FOV, the actual FOV can be completely covered,
eliminating the adverse effect of head motion prediction error.
The new selected horizontal FOV θ′h and vertical FOV θ′v can
be represented as follows in Equations 17 and 18:

θ′h = θh + 2dβ + 2dγ , (17)
θ′v = θv + 2dα + 2dγ . (18)

Note that when performing the FOV selection task before
pre-rendering the view, the exact head motion prediction error
for the next frame is unknown. Hence, in our sliding window
based FOV selection method, we propose to use a sliding
window of nw frames and nw denotes the sliding window
size. Then we define the estimated value of dα, dβ , dγ (i.e.,
d̂α, d̂β , d̂γ) as the average head motion prediction error dα, dβ ,
dγ of the past nw frames (i.e., frames in the sliding window)
so as to calculate the new selected horizontal FOV θ′h and
vertical FOV θ′v .

D. Prediction Error Determination

In Fig. 3, when the head and body motion, as well as the
controlling command, arrive at the edge device, the actual
motion can be obtained immediately after the motion decision
and there will be a prediction error determination comparing
the actual motion with the prediction motion. We will see
whether the head motion and body motion prediction error
is within the thresholds using the following steps. For head
motion, since we pre-render a larger FOV than actual FOV to
reduce the effect of head motion prediction error. The determi-
nation of dHead ≤ εH will be achieved by checking whether
|d̂α−dα|, |d̂β −dβ |, |d̂γ −dγ | are all within a given threshold
ε1. For body motion, the determination of dBody ≤ εB will be
achieved by checking whether dx, dy, dz are all within a given
threshold ε2. To be sure that the actual view always within the
pre-rendered view, the thresholds should be selected as low as
possible. However, this will increase the probability of error
determination, and hence doing the rendering and encoding
again live, thereby increasing latency. On the other hand,
setting this threshold too large may cause that the extreme
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case (e.g., having large head motion prediction error) cannot be
efficiently identified. We empirically discuss different choices
of given thresholds ε1, ε2 in Sections VI.C, VI.D, and VI.E.

VI. EXPERIMENTAL RESULTS

In this section, we describe our system setup, evaluation
metrics, and experimental results.

A. System Setup and Dataset
The system setup of our experiments is shown in Fig. 12,

where the rendering edge device is an Intel Core i7 Quad-
Core processor with GeForce RTX 2060. It is equipped with
a WiGig card connecting with the HTC Vive’s link box
using a cable. This link box is within the user’s room and
transmits rendered frames in a video format from the rendering
edge device to the HMD. On the user side, there are the
link box and two HTC lighthouse base stations in the room.
Users were wearing an HTC Vive HMD equipped with Vive
wireless adaptor [37] and using a controller if needed. Note the
wireless adaptor and link box aim to transmit and receive the
rendered frames using WiGig communications, while the HTC
lighthouse base stations are set for capturing 6DoF motions
(e.g., including head and body motion). The walkable area is
around 3m×3m of free space in our experiments, which cannot
exceed 4.5m×4.5m since the maximum distance between base
stations is 5m [38]. All head and body motions on HMD
were captured accurately using this HTC Lighthouse tracking
system while the controller detected the user’s controlling
commands. For a software implementation, we implement our
proposed techniques based on SteamVR SDK [39], OpenVR
SDK [40] as well as the Unity game engine [41] for data
collection, and use Keras [42] in Python for motion prediction.
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Fig. 12. System setup.
TABLE V

DATASET STATISTICS.
Virtual

Session #Samples #Samples
Application for Training for Testing

Museum
VM1 41,600 10,354
VM2 80,484 20,076
VM3 195,197 48,754

Rome
RM1 24,912 6,183
RM2 48,586 12,103
RM3 280,540 70,091

We use 80% of the dataset for training the prediction
model, and 20% for testing, ensuring the test data is from
viewers which are different than those in training data. Table V
presents the number of samples used as training data and test-
ing data for each type of session of the two applications Virtual
Museum and Virtual Rome (described in Section IV and listed
in Table III). Moreover, in our experiments, proposed single-
task LSTM and single-task MLP models learn parameters by
minimizing mean square error, and training is terminated after

TABLE VI
BODY MOTION PREDICTION FOR VIRTUAL MUSEUM.

Session Model
dx (mm) dy (mm) dz (mm)

RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.139 0.068 0.167 0.061 0.030 0.018

(w/ Guidance;
Eql-A 0.079 0.037 0.096 0.033 0.021 0.013

w/o Controller)
MLP 0.083 0.051 0.080 0.037 0.025 0.018
LSTM 0.061 0.035 0.074 0.030 0.019 0.013

VM2
Lin-A 0.094 0.045 0.099 0.041 0.048 0.021

(w/o Guidance;
Eql-A 0.053 0.025 0.056 0.023 0.029 0.013

w/o Controller)
MLP 0.044 0.029 0.047 0.030 0.032 0.015
LSTM 0.039 0.021 0.046 0.029 0.026 0.013

VM3
Lin-A 0.063 0.035 0.074 0.037 0.024 0.015

(w/o Guidance;
Eql-A 0.036 0.020 0.042 0.022 0.017 0.011

w/ Controller)
MLP 0.032 0.021 0.034 0.021 0.017 0.012
LSTM 0.032 0.021 0.033 0.019 0.015 0.010

TABLE VII
HEAD MOTION PREDICTION FOR VIRTUAL MUSEUM.

Session Model
dα (′) dβ (′) dγ (′)

RMSE MAE RMSE MAE RMSE MAE

VM1
Lin-A 0.64 0.34 0.96 0.43 0.48 0.21

(w/ Guidance;
Eql-A 0.47 0.29 0.57 0.27 0.33 0.18

w/o Controller)
MLP 0.51 0.35 0.77 0.48 0.40 0.27
LSTM 0.44 0.28 0.54 0.30 0.30 0.17

VM2
Lin-A 0.80 0.35 1.31 0.52 0.41 0.23

(w/o Guidance;
Eql-A 0.49 0.27 0.78 0.34 0.32 0.19

w/o Controller)
MLP 0.47 0.30 0.64 0.41 0.31 0.18
LSTM 0.66 0.34 0.72 0.42 0.55 0.28

VM3
Lin-A 0.61 0.35 1.38 0.61 0.33 0.21

(w/o Guidance;
Eql-A 0.45 0.29 0.82 0.39 0.26 0.17

w/ Controller)
MLP 0.41 0.27 0.66 0.37 0.22 0.15
LSTM 0.48 0.30 0.99 0.55 0.28 0.17

50 epochs in our experiments, while proposed multi-task LSTM
and multi-task MLP models learn parameters by minimizing
multi-task loss function and training is terminated after 20 and
50 epochs respectively with a batch size of 32.

B. Evaluation Metrics and Baselines
Evaluation Metrics: We choose several popular metrics

in sequential modeling to evaluate the performance on our
prediction task:
• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

|Ntest|
∑

y∈Stest

L∑
t=1

(yt − ŷt)2, (19)

• Mean Absolute Error (MAE):

MAE =
1

|Ntest|
∑

y∈Stest

L∑
t=1

(yt − ŷt), (20)

where |Ntest| is the number of total time steps of all trajecto-
ries on the test set Stest.

Baselines: We consider the following baselines to compare
against the performance of our proposed model:
• Linear Acceleration Model (Lin-A): Following the

work of [18]–[20], we compare against this linear re-
gression model, which extrapolates trajectories with an
assumption of linear acceleration. The Lin-A model em-
ploys the motion speed of the latest 3 time points to
predict the expected motion speed.
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TABLE VIII
BODY MOTION PREDICTION FOR VIRTUAL ROME.

Session Model
dx (mm) dy (mm) dz (mm)

RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.174 0.086 0.299 0.084 0.046 0.022

(w/ Guidance;
Eql-A 0.100 0.051 0.172 0.047 0.031 0.017

w/o Controller)
MLP 0.118 0.075 0.098 0.062 0.024 0.018
LSTM 0.032 0.021 0.073 0.044 0.024 0.019

RM2
Lin-A 0.125 0.053 0.145 0.048 0.036 0.020

(w/o Guidance;
Eql-A 0.074 0.032 0.085 0.030 0.025 0.015

w/o Controller)
MLP 0.066 0.037 0.064 0.030 0.064 0.021
LSTM 0.058 0.030 0.065 0.032 0.025 0.015

RM3
Lin-A 0.074 0.041 0.077 0.041 0.034 0.019

(w/o Guidance;
Eql-A 0.044 0.025 0.046 0.025 0.023 0.013

w/ Controller)
MLP 0.040 0.025 0.041 0.026 0.077 0.040
LSTM 0.040 0.024 0.040 0.024 0.023 0.013

TABLE IX
HEAD MOTION PREDICTION FOR VIRTUAL ROME.

Session Model
dα (′) dβ (′) dγ (′)

RMSE MAE RMSE MAE RMSE MAE

RM1
Lin-A 0.71 0.47 1.32 0.61 0.40 0.27

(w/ Guidance;
Eql-A 0.55 0.38 0.79 0.39 0.30 0.21

w/o Controller)
MLP 0.55 0.38 0.80 0.49 0.30 0.21
LSTM 0.53 0.36 0.73 0.47 0.29 0.22

RM2
Lin-A 0.92 0.57 2.53 0.66 0.56 0.34

(w/o Guidance;
Eql-A 0.66 0.43 1.48 0.44 0.39 0.26

w/o Controller)
MLP 0.63 0.42 1.34 0.46 0.37 0.25
LSTM 0.64 0.43 1.52 0.55 1.23 0.30

RM3
Lin-A 0.88 0.50 1.57 0.72 0.44 0.27

(w/o Guidance;
Eql-A 0.63 0.38 0.98 0.49 0.33 0.21

w/ Controller)
MLP 0.57 0.36 0.82 0.43 0.28 0.18
LSTM 0.60 0.39 0.89 0.52 0.35 0.25

• Equal Acceleration Model (Eql-A): The Eql-A model
is our modified version of Lin-A, where we assume the
acceleration is approximately equal during a small time
interval (e.g., 22ms). The advantage of this modification
is as follows: by employing a smaller number of time
points, the acceleration estimated may approach more the
actual value for the following 11ms, than is achieved by
the Lin-A model. We implement the Eql-A model using
motion speed of the latest 2 time points to predict the
expected motion speed of the next time point.

C. Prediction Accuracy
1) Single-task Model
Tables VI, VII, VIII, and IX exhibit the results of our body

motion and head motion prediction for the two applications
respectively. Specifically, Tables VI and VIII show the distance
between actual and predicted body position in x, y, z-axis
(denoted as dx, dy, dz), while Tables VII and IX present the
angular distance between actual and predicted head pose in
α, β, γ-axis (denoted as dα, dβ , dγ). Note that we use MSE as
the loss function when doing training. In each table, we com-
pare four models and can make the following observations:
• Tables VI and VIII, which report on the accuracy of body

motion prediction, show that our LSTM model achieves
smallest RMSE in each session and smallest MAE in
most sessions except VM2 compared to Lin-A, Eql-A,
and MLP models. It demonstrates the effectiveness of
using our proposed LSTM model to predict body motion
positions.

• Tables VII and IX, which report on the accuracy of head
motion prediction, show that while the LSTM model has
smallest RMSE for session 1, the MLP model performs
better (results in smaller RMSE) than other three models
in sessions 2 and 3 for both the applications. Compared
to session 1 (where users take a stroll about the room and
have a relatively fixed trajectory), sessions 2 and 3 are
more general and closer to normal 6DoF VR scenario.
Thus, we can see that MLP is a more feasible model to
do head motion prediction in general cases.

We can observe that (i) LSTM model achieves a better
performance in every session of body motion prediction and
session 1 of head motion prediction. These sessions have
a relatively small range (e.g., body motion speed is mostly
smaller than ±1m/s), gradual variation and more regularity.
(ii) MLP model performs better in sessions 2 and 3 of head
motion prediction. These two sessions have a large value range
(e.g., head motion can be up to ±300◦/s), quicker variation
and more frequent fluctuations (e.g., head motion speed vβ
has a large and abrupt change from −180◦/s to 200◦/s within
1s, shown in Fig. 6(e)). Note that although RMSE of head
motion prediction achieved by MLP model is quite small, we
still need to use proposed FOV selection method to address
the possible challenging case (the extreme case where head
motion prediction error is large) in head motion prediction,
and minimize effects of motion prediction error while also
minimizing selected FOV size.
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Fig. 13. Body motion prediction error using the LSTM model in the
RM3 session.

Next, we study what the values of ε2 should be in the
prediction error determination technique (Section V.D), where
the prediction motion is compared with actual motion when
the head and body motion, as well as controlling command,
arrive at the edge device. The determination of body motion
prediction error is checking whether dx, dy, dz are all within a
given threshold ε2. Fig. 13 presents the body motion prediction
error using the LSTM model in the RM3 session. In Fig. 13,
body motion prediction using the LSTM model achieves
that around 99.99% (i.e., 0.9999) of time points satisfy the
dx <0.6mm, dy <0.7mm, dz <0.45mm. Thus, we can observe
that if we set the given threshold ε2 as 1mm, less than 99.99%
of time points can be determined as ’correct’ for body motion
prediction in the proposed system, meaning that there is less
than 1 frame on average among 10,000 pre-rendered frames
will be ’incorrect’ while the rest of more than 9,999 pre-
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Fig. 14. Body motion prediction error in VM1 and VM3 sessions comparing the multi-task LSTM model with other predictive models.

rendered frames will pass the body motion error determination
successfully.

2) Multi-task Model
Fig. 14(a) and (b) exhibit the results of our body motion

prediction for two application sessions VM1 and VM3 respec-
tively. In each figure, we compare six models (single-task and
multi-task models) and can make the following observations.
• Fig. 14(a) shows the RMSE of d for body motion

prediction error in VM1, where we can see the multi-
task LSTM model achieves 56.2%, 23.7%, 18.5%, 3.2%,
26.7% improvement compared to Lin-A, Eql-A, MLP,
LSTM, multi-task MLP models. Our proposed multi-task
LSTM model achieves the smallest RMSE of d (i.e.,
0.096mm) compared to other models.

• Fig. 14(b) presents the RMSE of d for body motion
prediction error in VM3, where we can see the multi-task
LSTM model achieves 53.5%, 19.7%, 6.4%, 4.4%, 10.5%
improvement compared to Lin-A, Eql-A, MLP, LSTM,
multi-task MLP models respectively. Our proposed multi-
task LSTM model achieves the smallest RMSE of d (i.e.,
0.046mm) compared to other models. In Fig. 14(a)(b),
the reason that the prediction error for body motion in
VM1 is larger than VM3 is that users continuously walk
without stopping by any place in VM1 while they tend to
have less body motion and teleport to other place using
the controller in VM3.

• Similarly, in other sessions such as RM3, for RMSE of
d for body motion prediction error, the multi-task LSTM
model achieves 46.6%, 11.9%, 37.5%, 1.3%, 5.9% im-
provement compared to Lin-A, Eql-A, MLP, LSTM, multi-
task MLP models. The multi-task LSTM model still works
better than other five models. Moreover, in some cases
like VM2, the multi-task LSTM model achieves the same
RMSE of d for body motion prediction error with LSTM
model (i.e., multi-task LSTM model has 54.1%, 19.3%,
8.0%, 0%, 6.2% improvement in RMSE of d compared to
Lin-A, Eql-A, MLP, LSTM, multi-task MLP models). The
multi-task LSTM model has a smaller RMSE of dy (i.e.,
0.042mm) compared to the LSTM model (i.e., 0.046mm)
as well as a larger RMSE of dx and dz . To achieve the
smallest RMSE of d for body motion prediction error, in

this case, we can consider using multi-task LSTM model
to predict body motion in the y-axis and two single-task
LSTM models to predict body motion in the x and z-axis,
so that the RMSE of d for this combined models choice is
0.063mm, smaller than 0.066mm obtained by single-task
LSTM models as well as multi-task LSTM model. Thus,
we can always improve the performance by combing
three trained models (multi-task LSTM with single-task
LSTM models) if each of them has the smallest RMSE
of dx, dy , and dz to achieve the smallest RMSE of d.

D. Runtimes

Training and Prediction Times
Next, we briefly discuss the training times and inference

times taken by our proposed prediction models on the edge
device selected (Intel Core i7 Quad-Core processor with
GeForce RTX 2060). Note that the training for a proposed
model is done offline only once for a session with the training
samples for that session, and the prediction (testing) is done
online for new users, however one frame ahead to predict
motion in advance. Hence, the training times do not affect
the end-to-end latency of the system. Since the prediction is
done for the user’s head and body motion one frame ahead
in advance, the prediction time as well as FOV selection time
have to be less than 1ms (presented in Table II).

The training time can be different for each session de-
pending on the number of training samples used. In our
experiments, for RM3 (which has the largest training data size
among all sessions), the training times of one epoch for each
single-task LSTM and single-task MLP models are around 150
seconds and 40 seconds respectively, while the training times
of one epoch for the multi-task LSTM and multi-task MLP
models are around 270 seconds and 45 seconds respectively.
Thus for RM3, the training times for each single-task LSTM
model and multi-task LSTM model are around 2 hours and 1.5
hours respectively, while the training times for each single-task
MLP model and multi-task MLP model are around 0.55 hours
and 0.6 hours respectively. The training times for all the other
applications/sessions are lower than RM3 (e.g., for VM1, the
training time for each single/multi-task LSTM/MLP model is
lower than 18 minutes).
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Fig. 15. Average estimated error in α, β, γ-axis caused by different
choices of sliding window size in RM1 and RM3 sessions.

The prediction (testing) times, on the other hand, only
marginally varies between different applications and sessions.
The average prediction times over all the application sessions
considered in our experiments are the following: 0.09ms for
each single-task LSTM model, 0.04ms for each single-task
MLP model, 0.38ms for the multi-task LSTM model, and
0.04ms for the multi-task MLP model. The above shows that
our proposed head and body motion prediction models can
execute in real-time on the edge node, and since they are well
below the time of 1ms (described in the next paragraph), the
predictions are feasible to be performed in advance for the
user’s head and body motion of next time point.

Total Times of Prediction and FOV Selection
Prediction time consists of head and body motion predic-

tions: head motion prediction using three single-task MLP (i.e.,
0.12ms) and body motion prediction using either option (a)
multi-task LSTM (i.e., 0.38ms) or option (b) multi-task LSTM
combined with one or two single-task LSTM models (i.e.,
0.38+0.09ms or 0.38+0.18ms). Thus prediction time for head
and body motions is 0.5ms – 0.68ms. FOV selection includes
two parts: two simple addition operations to calculate horizon-
tal FOV and vertical FOV in Equations 17 and 18, and three
averaging operations to calculate the estimated value of dα,
dβ , dγ (i.e., d̂α, d̂β , d̂γ) as the average head motion prediction
error dα, dβ , dγ of the past nw frames. FOV selection can be
achieved in 0.00016ms when nw = 5 (proved to be a good
choice in Section VI.E). Thus, the total times of prediction
and FOV selection is within 1ms.

E. FOV Selection

Next, we evaluate the performance of our proposed slid-
ing window based FOV selection method, described in Sec-
tion V.C. As mentioned before, a sliding window of nw
frames (nw denotes sliding window size) is used to estimate
and obtain the new dα, dβ , dγ , the new selected horizontal
FOV θ′h, and vertical FOV θ′v before pre-rendering. We have
described how to calculate the estimated value of dα, dβ , dγ
(i.e., d̂α, d̂β , d̂γ) in Section V.C. Fig. 15 shows the absolute
value of the average estimated error in each axis (i.e., average
|d̂α − dα|, |d̂β − dβ |, |d̂γ − dγ |) caused by different choices
of sliding window size nw (ranging from 1 to 20 frames) in
RM1 and RM3 sessions. We can see that the smallest average
estimated error can be achieved when nw = 5 in both the
sessions. The average estimated error can be as low as less
than 5.5×10−3 degree in each axis, showing the efficiency of
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Fig. 16. CDF of estimated error in α, β, γ-axis when the sliding
window size nw = 5 in RM1 and RM3 sessions.

our approach. By achieving the low average estimated error,
we can have a better estimation of dα, dβ , dγ , so that can
finally reduce the adverse effect of head motion prediction
error.

We also study what the values of ε1 should be in the
prediction error determination technique (Section V.D), where
the prediction motion is compared with actual motion when the
head and body motion, as well as controlling command, arrive
at the edge device. The determination of head motion predic-
tion error is checking whether |d̂α − dα|, |d̂β − dβ |, |d̂γ − dγ |
are all within a given threshold ε1. Fig. 16 shows the CDF of
estimated error in α, β, γ-axis when the sliding window size
nw = 5 in RM1 and RM3 sessions respectively. Thus, we can
observe that if a given threshold ε1 is set as 1◦, the estimated
errors in each axis (i.e., |d̂α − dα|, |d̂β − dβ |, |d̂γ − dγ |) are
smaller than ε1 all the time for both RM1 and RM3 sessions,
meaning that the head motion prediction is always ’correct’ in
this case.

For further performance evaluation, we compare our pro-
posed sliding window based FOV selection method (Sec-
tion V.D) with method (a) selected FOV is a fixed larger
FOV, and method (b) using predicted FOV as the selected
FOV. Specifically, for our proposed sliding window based FOV
selection method, we use experimental results that average
estimated in α, β-axis are 4.8×10−3 and 5.5×10−3 degrees
respectively, shown in Fig. 15. For method (a), the fixed larger
FOV has the size of (110+60)◦×(110+60)◦ to cover potential
prediction error within 30◦. For method (b), the selected FOV
is predicted FOV in size of 110◦×110◦. As for evaluation
metrics, we calculate (i) overlap of pre-rendered predicted
view with actual FOV (e.g., 110◦×110◦ for HTC Vive), and
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Fig. 17. (a) Overlap of pre-rendered predicted view with actual FOV
versus head motion prediction error in α and β-axis, (b) Overhead
ratio versus head motion prediction error in α and β-axis.
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Fig. 18. (a) Actual user’s view; (b) Predicted user’s view with x-axis
error ∆x = 0.1m; (c) Idif obtained from views in (a)(b).

(ii) overhead ratio for pre-rendering computation and network
bandwidth needed to transmit rendered FOV from edge device
to VR glasses, defined as the pre-rendering view size divided
by the actual FOV size. For instance, when the pre-rendering
view size is 120◦×120◦, the overhead ratio for pre-rendering
computation and network bandwidth needed can be calculated
as 1.19 according to our definition.

As described in Section VI.C, our proposed sliding window
based FOV selection method can address the extreme cases
where head motion prediction error is large. We compare the
above three methods when dealing with head motion predic-
tion error ranging from 0 to 30◦ in α and β-axis. Fig. 17(a)(b)
show the overlap of pre-rendered predicted view with actual
FOV and overhead ratio versus head motion prediction error
in the α and β-axis (the coordinate of head motion shown in
Fig. 4(c)). Note that when the x-axis of Fig. 17(a)(b) equals
to 10◦, we consider the situation of head motion prediction
error in α and β-axis (i.e., dα, dβ) are both 10◦ and no head
motion prediction error in the γ-axis (i.e., dγ). In Fig. 17, we
can see that our proposed sliding window based FOV selection
method achieves (i) the overlap with actual FOV as high as
99.991% (which is close to 100% achieved by method (a) and
better than method (b)), and (ii) the corresponding overhead
ratio is always smaller than method (a).

For example, in our experiments, we observe that when the
prediction errors in α and β-axis equal to 5◦, our proposed
sliding window based FOV selection method achieves an
overhead ratio of 1.19, compared to an overhead ratio of 2.39
for method (a), which corresponds to around 50% reduction
of overhead ratio and 47% saving of bitrates (bandwidth
needed) compared to method (a). Thus, the high overlap
with actual FOV and small overhead ratio illustrate that our
proposed sliding window based FOV selection method has a
good user experience (almost no miss of actual FOV) and
low overhead ratio for pre-rendering computation as well as
network bandwidth needed to transmit rendered FOV from
edge device to VR glasses, compared to methods (a) and (b).

F. Effect on User Experience

To evaluate the effect on user experience caused by the
prediction error between the actual view and the predicted
view which will be pre-rendered and delivered to the user,
we propose following metric. Assume that we have two views
V1 and V2 in the RGB format. Firstly, we convert the RGB
images (V1 and V2) to grayscale intensity images I1 and I2 by
eliminating the hue and saturation information while retaining
the luminance [43]. For each pixel i in the grayscale intensity
images, we calculate the difference between the two intensity

VM1 VM2 VM3 RM1 RM2 RM3
Lin-A 4.6715 7.1169 1.5341 5.1809 4.3222 1.4069
Eql-A 3.366 4.3619 1.0436 3.5506 3.4853 0.905
MLP 2.6546 4.0139 1.2941 4.8654 2.4308 3.5167
LSTM 2.2613 3.7975 0.9837 3.2844 2.2741 0.8675

Multi-task MLP 3.4 4.11 1.32 4.9 2.5 3.65
Multi-task LSTM 2.2 3.797 0.94 3.28 2.3 0.856
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Fig. 19. The average percentage of mismatched pixels for different
models during each session.

images, Idif , as follows.

Idif (i) =

{
I1(i)− I2(i), if I1(i) ≥ I2(i)

0, otherwise
(21)

Note that we set the Idif as 0 in the second case of Equa-
tion 21, because otherwise the motion change of the same
object will be presented in Idif twice: positive and negative
respectively. Thus we only keep the positive one (i.e., the first
case in Equation 21) to evaluate the difference between the
two views. Fig. 18 presents an example of two views and
the corresponding Idif . In Fig. 18(c), we can see that most
of pixels in the view have the intensity value of 0 while the
residual pixels have intensity values larger than or equal to 1.
We define the percentage of mismatched pixels as

Rdif =
Ndif
Nframe

, (22)

where Ndif represents the number of pixels which have
difference in grayscale intensity and Nframe is the total
number of pixels per frame.

Fig. 19 illustrates the average percentage of mismatched
pixels caused by body motion prediction error. Due to the
large number for each session in the test dataset, we calculate
this value by doing body motion prediction and rendering
corresponding predicted as well as actual views for 300
randomly selected samples from test data for every session.
Fig. 19 demonstrates that compared to other models in each
session, our proposed multi-task LSTM and LSTM models
achieves less adverse effect on user experience caused by the
body prediction error (denoted with green and yellow bars).
Using the multi-task LSTM model, the average percentage of
mismatched pixels can be smaller than 1% in both VM3 and
RM3 sessions.

Next, we define the percentage of pixels as

Rp =
Np

Nframe
, (23)

where Np represents the number of pixels and Nframe is
the total number of pixels per frame. For each pixel, it
can have a value of grayscale intensity difference in Idif
(which equals to a integer between 0 to 255). Apart from
discussion in Section VI.C.1, by using this metric of the
percentage of pixels, we further study what the values of
ε2 should be in the prediction error determination technique
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Fig. 20. The percentage of pixels having pixel difference for versus dx, dy , and dz .
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Fig. 21. The percentage of pixels versus time points achieved by the
multi-task LSTM model during VM2.

(Section V.D), where the prediction motion is compared with
actual motion. The determination of body motion prediction
error is checking whether dx, dy, dz are all within a given
threshold ε2. Fig. 20 shows an example of the percentage
of pixel versus different dx, dy , and dz in Virtual Museum
application. We can observe that when dx = 1mm, dy = 1mm,
dz = 1mm, the percentage of pixels is more than 97%, 95%,
97% respectively corresponding to pixel difference less than 3
(pixel difference = 0, 1, or 2), which means ε2 = 1mm can be
a good choice for the body prediction error determination.

Furthermore, for our proposed multi-task LSTM model, we
evaluate the adverse effect caused by body motion prediction
error using metric of the percentage of pixels. Fig. 21 presents
the percentage of pixels versus the time points achieved by
the multi-task LSTM model during the VM2 session. We
can see that most of the time, the percentage of pixels for
pixel difference = 0 is larger than 96% (equivalent to the
average percentage of mismatched pixels smaller than 4%).
The average percentage of pixels for pixel difference = 0, 1,
2, 3, 4, 5 equals to 97.43%, 2.49%, 0.03%, 0.009%, 0.006%,
0.002% respectively, illustrating that the difference between
actual view and predicted view is very small. Thus, our
proposed multi-task LSTM model performs well in terms of
small adverse effect caused by body motion prediction error.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a head and body motion prediction
model for 6DoF VR applications, to enable predictive pre-
rendering using edge intelligence and thus address latency
challenge in edge computing-based 6DoF VR. We present a
multi-task LSTM model and an MLP model to learn general
head and body motion patterns and predict the future viewing
direction and position based on past traces. We also develop
a FOV selection technique for pre-rendering a larger FOV

to reduce head motion prediction error and the motion error
determination technique as part of the system mechanism. Our
method shows good performance on a real motion trace dataset
with high precision.

Our planned future work includes (i) further development
and evaluation of the proposed edge-based predictive pre-
rendering approach from latency perspectives, (ii) performing
subjective studies to understand and quantify user experience
using our proposed approach, (iii) further experiments predict-
ing more time points and pre-delivering from edge to HMD,
and (iv) considering multiple users and more possible gaming
effects of the controller in applications, so as to address
more challenging latency scenario. We consider applying our
approach to more VR applications to show the feasibility of
our approach. We also plan to study and develop predictive
models for hand motion obtained from controllers to enable
more complete 6DoF immersive experiences.
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