
A Novel Hyper-cast Approach to Enable Cloud-based
Virtual Classroom

Xueshi Hou, Yao Lu, Sujit Dey
Mobile Systems Design Lab, Dept. of Electrical and Computer Engineering

University of California, San Diego
{x7hou, luyao}@ucsd.edu, dey@ece.ucsd.edu

Abstract—In this paper, we explore the possibility of enabling
cloud-based virtual space applications providing the advan-
tages of computational scalability and access from any end
device, including future light-weight wireless head mounted
devices (HMD). In particular, we investigate a virtual classroom
application in which the classroom including teacher, students
and activities are rendered on the cloud, with each student view
captured and streamed to students’ end devices. A key chal-
lenge is the high bitrate needed to stream all the student views,
leading to high cloud cost and wireless network bandwidth.
By identifying that multiple student views may share common
pixels, we propose a novel hyper-cast approach where common
pixels can be transmitted by a single broadcast stream while the
residual pixels for individual student views can be transmitted
by unicast streams. We formulate the problem of minimizing
the total bitrate needed to transmit the student views using
hyper-casting and describe our approach. Simulation results
show that the hyper-cast approach can significantly reduce total
bitrate needed, compared to traditional cloud-based approach
of transmitting all the views as individual unicast streams,
hence addressing the challenges of cloud cost and network
bandwidth.

Keywords-Cloud-based Virtual Space; Virtual Classroom;
Hyper-cast;

I. INTRODUCTION

In recent years, Virtual Reality (VR) applications have be-
come popular. New head mounted devices (HMD) together
with 3D display technology are unlocking new applications
not only in gaming, but also in education, medicine, travel,
training and entertainment. However, since VR applications
have high computational requirement, current HMDs are
either tethered to a PC (like Oculus [1]) or use a smartphone
(like Samsung Gear VR [2]) making the latter heavy to wear
and hence not portable. In order to enable a truly portable
and mobile VR experience, we propose performing the VR
rendering on the cloud, and encoding and transmitting the
rendered views as video streams over the wireless network
to HMDs. In this case, the HMDs will only need video de-
coding ability, leading to the design of lightweight wireless
HMDs, not tethered to PCs or smartphones.

In this paper, we explore enabling a particular virtual
reality application, virtual classroom, in which a teacher and
students from different geographic locations can participate
and communicate in the same classroom session, rendered

as avatars in the same virtual classroom. A key challenge
in enabling cloud-based virtual classroom is the high bitrate
needed to stream all the individual student views rendered
on the cloud which have to transmitted to the student HMDs,
leading to high cloud cost and wireless network bandwidth.
Hence, we address the problem of reducing the sum of
bitrates of the cloud-rendered student video streams, without
compromising video quality, the latter particularly important
for HMDs.

Approaches like asymmetric video encoding [3][4] can
reduce overall bitrate needed for all users by encoding left
and right views of each user with different quality. However,
by potentially compromising video quality, they cannot be
used for HMDs. Other approaches like [5] have studied
multiple players gaming situations, taking advantage of peer-
to-peer sharing between multiple players in the same game
scene. However, their analysis of correlation of different
user views is limited because they proposed the correlation
model only for third-person games, where players watch
the entire game scene in a bird-view. Consequently, such
methods cannot apply to virtual space applications like
virtual classroom.

As opposed to general cloud-based streaming applications
where each users view is unique, in virtual classroom,
because the students sit close to each other mostly viewing
the teacher, the multiple user views can contain large parts
very similar to each other. In Figure 1, view A and view B
are captured from two virtual cameras corresponding to the
views of two students in the virtual classroom world. We
can observe that view A and view B share a large portion
of common pixels. Taking advantage of this observation, in
this paper, we propose a novel hyper-cast system design in
which not every pixel of each students view rendered on the
cloud needs to be encoded and streamed from the cloud to
the student device. Instead, we will transmit the common
pixels (common view) using broadcast, and transmit the rest
of the pixels (we call residual pixels or residual views) for
each individual user using unicast.

The rest of the paper is structured as follows. In Section II,
we provide an overview of the virtual classroom application
and our proposed hybrid-cast approach. In Section III, we
describe the methodology for common view extraction, and

provide the problem statement and our solution. In Section
IV, we describe our experimental setup and results. Finally,
we conclude in Section V.

Figure 1. Different users’ views in the same virtual classroom.

II. OVERVIEW

In this section, we provide an overview of virtual class-
room and our proposed hybrid-cast approach. Figure 2
illustrates the virtual classroom application, which we have
developed using Unity [6] and Oculus [1]. The classroom
consists of several students, each of which has a unique
view of the classroom.

Figure 2. Virtual classroom.
Figure 3 illustrates the architecture of the proposed hyper-

cast approach. On the cloud, graphics are rendered in
response to commands from the user. Then they need to be
captured, encoded and transmitted to the users. We define
two kinds of views: primary view and secondary view.
Primary view will be selected among a group of views that
contains most common parts with other views. Only one
view in the group will be selected as a primary view and oth-
ers will be treated as secondary views. In specific, we show
an example in Figure 4. Figure 4(a) represents a primary
view and Figure 4(b) represents a secondary view. Secondary
view consists of two parts, common view and residual view.
The common view is part of the view that shares the common
area between primary view and secondary view. Figure 4(d)
is the common view of the secondary view and Figure 4(c) is
the corresponding part from primary view. The calculation
of how to extract common view from primary view will be
explained in the next chapter. Residual view is defined as
the group of pixels where the common view is missing from
the secondary view. And Figure 4(e) is the residual view,
which can be used to recover secondary view (Figure 4(f))
by combining with common view (Figure 4(d)).

Thus, as can be seen from Figure 3, only primary view
and residual view need to be transmitted. They will be sent
from the cloud through the core network to the gateways of
service providers. Next, the primary view will be broadcast
by cellular base station and the residual view will be unicast.
Note that besides using cellular, the hyper-cast approach can
be implemented using the broadcast and unicast mechanisms
available with other access technologies like Wi-Fi and
satellite. Finally, on the end devices, all users will receive
the primary view. The secondary users will also receive their

residual views. The primary users will decode and display
the video directly while secondary users will decode both
primary view and residual view, transform primary view to
common view and combine common view with residual view
to get his secondary view.

Figure 3. Hyper-cast approach.

Figure 4. Illustration of common view extraction: (a) primary view A; (b)
secondary view B; (c) common pixels from view A; (d) common pixels
from view B; (e) residual view in B; (f) generated view B from common
view and residual view.

III. OUR APPROACH

In this section, we first describe the methodology for
common view extraction and give the problem statement.
Next, we present our proposed approach as well as solution
to the problem.

A. Common View Extraction
Figure 5 illustrates the common view extraction flow. We

assume view of user A is a primary view and view of user
B is a secondary view. To extract common view between
user A and user B, we perform a series of transformation
from window space of A to the object space, and further
to the window space of B. A common view consists of a
set of pixels from A that fall within window space of B
after transformation. The transformation from object space
to window space goes through four steps, as described in
[7]. We first transform the object space to eye space using
ModelView matrix; we then use projection matrix to trans-
form eye space to clip space; next, clip space is converted
to Normalized Device Coordinate (NDC) [8] space using
perspective dividing; and we perform viewport transform to
the window space. For the transformation from (user A’s)
windows space to object space, as shown in Figure 5, we
perform inverse transformation to each of stated procedures
above using inverted transformation matrices.

Figure 5. Architecture of common view extraction.

B. Problem Statement
Given: All views in the virtual classroom; Dimensions of
the virtual classroom, including the width and length.
Find: An optimal strategy to minimize the sum of number
of pixels across all views.

min
∑

i∈S1,S2

T (i) = min(
∑
i∈S2

P (iresidual) +
∑
i∈S1

P (i))

= max(
∑
i∈S2

P (icommon)−
∑
i∈S1

P (i))

= max(
∑
i∈S2

R(icommon)− |S1|) (1)

Equation 1 demonstrates our objective to minimize the
sum of total number of pixels transmitted T (i), across
all views i. Note that having a single primary view may
lead to many secondary views having little or no common
views, and thus large residual views. Therefore, we need
to divide the class students into one or more groups, each
group having a primary view and zero or more secondary
views. S1 and S2 represent the primary view and secondary
view, respectively. P (iresidual) and P (icommon) represent
the residual and common pixels of view i, respectively. P (i)
denotes the pixels of view i. We define the common pixel
ratio of a secondary view i as R(icommon) = P (icommon)

P ,
where P is the number of pixels per frame. |S1| indicates
the number of primary views. We note that for each sec-
ondary view, only one primary view is selected to calculate
P (icommon) and P (iresidual).

C. Proposed Approach
In our approach, in order to assign multiple users to

different groups and minimize the sum of bitrate across
multiple users, we want to develop a strategy to group the
views which have a lot of common pixels together. In order
to make the grouping technique fast, we need to avoid
the time-consuming process of conducting common view
extraction between all pairs of different views. Moreover,
calculating R(icommon) between views can be prohibitively
expensive. Hence, we develop and use an easy to calculate
metric to approximately represent how much is common
between two views; we term this metric common normalized
VLength (cnVL), which we define next.

V Length = xV L + yV L (2)
We define VLength as the sum of xVL and yVL, as shown

in Equation 2. In this definition, xVL and yVL denote the
length of the front wall and side wall within the current

view respectively. Figure 6 illustrates from the top of the
classroom an example of xVL and yVL with the view of
student in seat #9.

Figure 6. The model of the virtual classroom and camera view when
looking from the top. It presents the boundary of the classroom, the
seat positions as well as a demonstration of users’ view. The lengths
corresponding to xVL and yVL are shown.

Table I
FOUR DIFFERENT CASES.

Case a b c d
Left wall visible X X
Front wall visible X X X X
Right wall visible X X

Figure 7. (a)-(d) show four types of relative positions between classroom
boundary and view boundary. RmW denotes the width of the classroom in
x-axis.

Figure 8. Several typical situations of the xfactor of cVL.
To calculate VLength, we summarize four difference types

of relative positions between classroom boundary and view
boundary, as shown in Table I. Figure 7 also describes the
methodology to calculate VLength given these four types
of relative positions. Especially, we note that for case (d),
VLength is obtained separately according to yVL from the
left wall (yV Lleft) and right wall (yV Lright), respectively,
as shown in Equation 3.

V Length = xV L + yV Lleft + yV Lright (3)
We define the Common VLength (cVL) as a metric to

evaluate the common ratio between two views p and q.
Equation 4 describes cV L, with xfactor and yfactor defined
in Equation 5 and 6 respectively. xfactor is defined as the
length of the front and side wall within both views, which
is shown in Figure 8. Condition 1 indicates that two views
are of case (a) and (c), respectively; condition 2 indicates

that both views are of case (b); and condition 3 indicates all
other case combinations. yfactor is defined as the squared
ratio of the distance to the front wall for both views.

cV L = xfactor × yfactor (4)

where

xfactor =

xV L(i) + xV L(j)− room if condition 1;

xV L(i)− |∆xi −∆xj | if condition 2;

min(xV L(i), xV L(j))+

min(yV Lleft(i), yV Lleft(j))+

min(yV Lright(i), yV Lright(j))

otherwise (condition 3);
(5)

yfactor =

{
(∆yi/∆yj)

2, if ∆yi < ∆yj

(∆yj/∆yi)
2, if ∆yi ≥ ∆yj

(6)

To evaluate our proposed metric, we compare cVL (Equa-
tion 4) to the common pixel ratio for every pair of views in
a virtual classroom with a seat pattern of 2x5 (10 views, 100
pairs of views). Each view has a resolution of 690x400 pix-
els. Figure 9(a) illustrates the correlation between common
VLength (cVL) and the common pixel ratio values for the
100 pairs of views, with an overall correlation of 0.8828. To
increase the correlation with common pixel ratio, we define
common normalized VLength (cnVL) as follows:

cnV L(p, q) =
cV L(p, q)

cV L(p, p)
(7)

Figure 9. Validation of model parameters, showing the relationship
between common pixels and cVL as well as cnVL.

Figure 9(b) illustrates a higher correlation, 0.9207, be-
tween cnVL (Equation 7) and the common pixel ratio. The
calculation of cnV L values is much simpler and faster com-
pared to obtaining the actual Common Pixel Ratio between
every two views using graphic rendering. Therefore, due
to the high correlation between cnV L and common pixel
ratio, we can approximate the common pixel ratio with the
metric cnV L, which greatly saves runtime. Subsequently, we
update our problem formulation (Equation 1) as follows:

min
∑

i∈S1,S2

T (i) = max(
∑
i∈S2

R(icommon)− |S1|)

≈ max(
∑
p,q

cnV L(p, q)− n) (8)

We implement the grouping algorithm that will consider
explicitly every possible grouping choice, considering each

view in a group as primary view. With Equation 8, we
can do the grouping fast and effectively by using our
proposed metric to avoid prohibitively expensive calculation
of R(icommon).

IV. EXPERIMENTAL RESULTS

We have performed experiments to evaluate the perfor-
mance of our proposed hyper-cast approach on virtual class-
rooms of different sizes. Our approach is implemented using
MATLAB, and runs on a Windows 10 operating system with
an Intel Core i7-5930K Haswell-E 6-Core 3.5GHz processor
and 32G memory.

Figure 10. Groups obtained for (a) 5x5, and (b) 7x7 classrooms. Every
deep pink circle represents the seat chosen as primary view while the light
pink circle corresponds to the seats with secondary views.

Figure 10 shows the result of applying our proposed
approach on virtual classrooms of size 5x5 and 7x7 seat
patterns. Our proposed hyper-cast approach reduces the
bitrate needed by 44.56% for 5x5 classroom, and 48.4%
for 7x7 classroom, compared to the conventional approach
of transmitting all the views as individual unicast streams.

V. CONCLUSION

In this paper, we propose a multi-user hyper-cast approach
which can significantly reduce high-quality video encoding
bitrate needed across multiple users. We plan to develop
more efficient ways of grouping students, and also explore
other virtual space applications in the future.

REFERENCES
[1] [Online]. Available: https://www.oculus.com/

[2] [Online]. Available: http://www.samsung.com/global/galaxy/gear-vr/

[3] G. Saygili, C. G. Cihat and A. M. Tekalp, “Evaluation of asymmetric
stereo video coding and rate scaling for adaptive 3D video streaming,”
IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 593–601, June
2011.

[4] S. Valizadeh, A. Maryam and N. Panos, “Bitrate reduction in asymmet-
ric stereoscopic video with low-pass filtered slices”, in Proc. of 2012
IEEE International Conference on Consumer Electronics (ICCE) (Las
Vegas, NV), Jan. 13–Jan. 16, 2012, pp. 170–171.

[5] W. Cai and V. C. Leung, “Multiplayer cloud gaming system with
cooperative video sharing,” in Cloud Computing Technology and
Science (CloudCom), IEEE 4th Intl. Conf.(Taipei), Dec. 3–6, 2012,
pp. 640–645.

[6] [Online]. Available: https://unity3d.com/

[7] [Online]. Available: http://www.songho.ca/opengl/gl trans form.html/

[8] C. Everitt, “Projective texture mapping,” in White paper, NVidia
Corporation, 2001, 4.

