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Abstract—The emergence of edge computing in Intelligent
Transportation Systems (ITS) has shown promise in enabling
real-time sensor fusion applications. In this paper, we explore
how to utilize edge computing to aid in collaborative vehicular
perception, an emerging topic within ITS which involves vehicles
sharing sensor data with one another to extend each vehicle’s
perception beyond what its individual sensors can see. However,
achieving real time collaborative perception is a challenge even
with the utilization of edge computing; due to the large amount of
multi-modal sensor data produced by modern intelligent vehicles,
the amount of data transmitted over wireless channels and the
complexity of computational tasks will need to be managed dy-
namically based on the wireless network conditions and available
computing resources. As such we propose REFO, a Real-time
Edge Fusion Optimization method that combines task partitioning
with data reduction and model compression to maximize sensor
fusion accuracy while adhering to Quality of Service (QoS)
requirements. We define a performance metric termed effective
mean average precision (EmAP), which incorporates both QoS
and fusion accuracy, and show that our proposed neural network
based REFO action decision framework can outperform the best
comparison models by approximately 10% in terms of EmAP
over 18 test combinations of network and computing conditions.

Index Terms—Connected Vehicles, Data Reduction, Model
Compression, Task Partitioning, Machine Learning

I. INTRODUCTION

The intelligence of vehicles on the road today is evolving
at a rapid pace. Production vehicles are being released with
more sensors and computing power with each passing year that
enable the vehicle to sense its mechanical performance as well
as the presence and activity of objects inside the cabin and in
the surrounding environment. In recent years, external sensing
has become an important topic due to increased public interest
in vehicular safety and autonomous driving. The Advanced
Driver Assistance System (ADAS), which gives alerts to the
driver about surrounding or upcoming hazards, is now standard
in newly produced vehicles. The ADAS is entirely reliant on the
vehicle’s external sensors which can include instruments such as
RGB cameras, depth cameras, lidar, radar, or ultrasonic sensors.
While the ADAS does provide important safety benefits, these
systems are still far from perfect and are prone to errors.
Additionally, environmental conditions such as bad weather or
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objects occluding sensors on the vehicle can affect the ability
of the ADAS to accurately perceive its surroundings.

One approach to minimize the perception errors experienced
by a vehicle’s ADAS is to have multiple vehicles share their
sensor data with each other [1] [2]. In this way, a more complete
perception of an area can be achieved; gaps in coverage from
one vehicle may be filled in by another and objects that were
seen by multiple vehicles can have their perception improved.
The emergence of edge-based communications can provide a
suitable infrastructure for facilitating this sensor sharing, but
creating this cooperative perception in real time is challenging.
Having to aggregate all of the sensor data from each vehicle in
a particular area, apply the sensor fusion algorithms, and send
the information back to each vehicle quickly enough to satisfy
a Quality of Service (QoS) requirement is difficult considering
the size of the sensor data and challenges experienced with
wireless vehicular networking.

To deal with the dynamic nature of vehicular environments,
new methods must be developed in order to meet the latency
demands of these real-time systems. While emerging 5G
networks can be utilized to bring new levels of wireless
communication to vehicles, there are always going to be
situations encountered in vehicular environments that can affect
the vehicles ability to communicate; driving through a tunnel
or simply being surrounded by large objects/buildings can have
a significant effect on the amount of data that the vehicle can
transmit and receive. As such, the type and amount of data
that should be transmitted along with the corresponding fusion
models must be adjusted dynamically so that the QoS of this
edge fusion system can be maintained while maximizing the
sensor fusion accuracy. To address these issues we created
REFO, a Real-time Edge Fusion Optimization method. The
focus of this work is not on creating new methods for improving
the accuracy of object detection/association or related vehicular
sensor fusion tasks, but rather to use a variety of existing data
extraction, classification, and fusion techniques to explore the
feasibility of real-time edge fusion in real-world environments.
The REFO methodology we propose provides a model for
facilitating vehicular data exchange over the edge that provides
the computational tools and decision making algorithms for
executing the end-to-end collaborative sensor fusion process.
The testing results of our proposed method demonstrates
successful performance over 18 different combinations of
network and computing conditions while our proposed action
decision framework outperforms the best comparison models
by approximately 10% over all test cases. More specifically,
the research contributions of this paper are as follows:

• We present REFO, a method for dynamically reducing the
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amount of data and computational inference experienced in
wireless edge-based vehicular sensor fusion in connected
vehicle environments.

• We propose an ensemble fusion model which contains all
the perception and fusion abilities needed for collaborative
perception and has the capacity to be actively compressed
and partitioned based on the current networking, comput-
ing, and traffic conditions.

• We have created an action decision framework to deter-
mine the optimal data reduction, model compression, and
task offloading actions that should be chosen to satisfy
a given QoS requirement while maximizing perception
accuracy.

• We have developed a Deep Neural Network (DNN) based
latency prediction model to estimate whether the latency
requirements will be met for a given set of conditions.

The remainder of this paper will be organized as follows:
Section II will be a review of related works in the area of
vehicular edge computing, specifically in other works that
involve external sensing, task partitioning, data reduction, and
model compression. In Section III, this edge fusion problem
is examined in more detail and an overview of the REFO
method is presented as well as our problem formulation and
latency model. In Section IV, we discuss our methodology
for generating and executing actions decisions which includes
the action decision framework and ensemble fusion model
as well as an overview of the different offloading levels. In
Section V, we describe our research setup and present the results
of our action decision framework on both cellular vehicle-
to-everything (C-V2X) and 5G cellular test sets as well as
comparing the performance to related models. Finally, we
conclude the paper and discuss our plans for future work in
Section VI.

II. RELATED WORK

A. External Sensing

Advancements in methods for utilizing sensor data to detect
the presence of objects and characteristics of the surrounding
environment have paved the way for the intelligence that exists
inside modern vehicles. The most studied type of external
sensing is that involving RGB cameras and the most common
tasks for sensing using RGB images are image classification,
image segmentation, and object detection. Early methods for
solving these types of problems included transforms [3] [4] [5],
feature descriptors [6] [7] [8] [9], part-based models [10] [11],
and bag-of-words methods [12] [13], but the invention of
AlexNet [14] and subsequent neural network architectures
such as GoogleNet [15] and ResNet [16] have shown new
heights for accuracy in all of these sensing tasks. As such even
more advanced methods for general image classification [17],
object detection [18], and image segmentation [19] have
been developed in the past decade as well as the emergence
of task specific models that are trained for more specific
purposes such as defect detection [20] [21] [22], medical
imagery [23] [24] [25], and satellite imagery [26] [27] [28].

The advancements in external sensing using images has
extended to other sensors as well. Radar is another modality that

has been around for a long time for external sensing purposes.
As with images, previous methods for external sensing with
physics based methods [29] [30] have been largely replaced by
machine learning methods [31] [32] [33] [34]. However, lidar,
a relatively new sensing modality has shown to have the best
achievable performance for 3-D external sensing for a single
sensor and thus there have been many methods proposed over
the past decade for external sensing tasks that use lidar data
as input [35] [36] [37]. A main drawback of using lidar is
the massive amount of data the sensor can produce, which
makes processing and potentially transmitting this type of data
in real-time a challenge.

B. Data Reduction

Data reduction is a topic that has been studied for decades
and for many years was mainly focused on creating new
or improved data compression methods [38]. However, the
emergence and scale of new sensor applications in edge environ-
ments has produced new needs for task specific data reduction
solutions. As such, there have been new works focusing on
data reductions for tasks such as fault detection [39], mobile
health [40], and internet of things (IoT) applications [41] [42].
Improvements in vehicular sensor technology have brought
about new levels of environmental perception for vehicles,
but at the cost of producing large amounts of sensor data
every second that can potentially affect the ability for real-time
processing. As such, there have been several works focused
on data reduction for vehicular sensor data in recent years,
particularly relating to cooperative perception since the multi-
source aspect of this problem creates an even greater need
for reducing data. Autocast [43] reduces the amount of point
cloud data generated by lidar sensors by intelligently selecting
sections of points clouds to transmit to surrounding vehicles
based on what is going to be more useful to the receiving
vehicle. Coopernaut [44] also attempts to reduce the amount of
point cloud data through the use of point transformer [45] as
well as V2V-Net [46] which use variational image compression
techniques [47] to reduce the size of encoded point cloud
feature maps. However, all of these methods are based on
vehicle-to-vehicle (V2V) communications which has difficulty
with large scale implementations, as opposed to the vehicle-to-
infrastructure (V2I) method of aggregating data at road side
units (RSU), which is already beginning to see adoption and
deployment [48]. EMP [49] does however utilize V2I links
while reducing the amount of point cloud transmission by
selective partitioning of the point cloud. While these methods
do present novel solutions for reducing the point cloud data
produced by lidar and similar sensors, they do not provide a
general data reduction framework that can incorporate other
types of sensor data such as RGB cameras.

C. Task Partitioning

Beyond simply reducing the amount of data each vehicle
transmits, another way to improve the end-to-end latency in
an edge fusion system is to incorporate computational task
offloading. Since the amount of computing available on vehicles
can vary greatly and in many cases can be quite limited, the
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total computational inference time can be reduced by offloading
certain tasks to the edge where more powerful computing exists.
As the topics of collaborative perception and edge computing
have emerged, so have many methods in task partitioning in
vehicular edge computing [50]. Choosing the optimal selection
of which tasks should be executed on the vehicle and which
should be executed on the edges as well as potentially parti-
tioning computationally expensive tasks between the vehicle
and the edge can have a large impact on the overall quality
of service of an edge fusion system. As such, many different
techniques have been applied to this problem including game
theory [51], convex optimization [52], load balancing [53],
multi-armed bandits [54], dynamic programming [55], and
reinforcement learning [56] [57].

D. Model Compression

As the paradigm of edge computing continues to evolve,
there have been continual strides to discover new methods for
reducing the inference time as well as the memory and energy
consumption of the models that are being executed at the edge
as well as the local devices. Many of these improvements
fall under the umbrella of model compression [58] [59]. The
most common type of model compression is model pruning,
such as model slimming [60] or early exit [61], where a
smaller version of the model with less parameters is utilized,
which has less inference time at the cost of reduced accuracy.
Other types of model compression that exist are parameter
quantization [62], low-rank factorization [63], and knowledge
distillation [64]. Some of these model compression methods
have been combined with task partitioning to provide a suitable
solution for task partition point selection for computational
offloading in mobile edge networks. Edgent [65] combines
task partitioning along with DNN early exit methods to select
the optimal DNN size and partitioning points to adapt to the
current channel bandwidth. In [66], a reinforcement learning
(RL) model is created to determine the offloading decisions
that utilizes both task partitioning as well as a number of model
compression methods.

However, to the best of our knowledge, there is no work
which combines simultaneous data reduction and model
compression with task partitioning for creating computational
offloading decisions in mobile edge environments. This work
goes beyond the ones presented in this section by combining
data reduction, model compression, and task partitioning
simultaneously which we propose will lead to more optimal
decisions in maximizing the utility of an edge computing
architecture.

III. SIMULTANEOUS DATA REDUCTION, MODEL
COMPRESSION, AND TASK PARTITIONING

While collaborative perception can bring about new levels
of safety and awareness for intelligent vehicles, accomplishing
this sensor fusion task in connected vehicle environments can
be difficult. Some factors that contribute to this difficulty
are the highly variable and dynamic nature of vehicular
communications and the limited amount of computational
power available on vehicles. Additionally, the raw amount

of sensor data produced by vehicular sensors can be quite
large, even from just a single RGB camera. As such, a system
to dynamically reduce the amount of data that each vehicle is
transmitting based on network conditions is needed in order
for the data sharing to take place in real time. However, data
reduction alone may not always be enough to satisfy a given
end-to-end latency requirement; many of the most accurate
sensor fusion models also have high execution latency and
may not be suitable for all situations. To this end, multiple
different sensor fusion models that vary in complexity can be
used. In this way, more lightweight models can be chosen in
poor conditions where the total inference time must be reduced
in order to satisfy the latency requirement. To provide even
more optimal solutions, model compression is also utilized in
order to increase the granularity of the decision space; each
machine learning model that is used in this end-to-end sensor
fusion task can have their parameters dynamically adjusted
to decrease the size and corresponding latency of the chosen
fusion model which creates more available options in the
trade off between latency and accuracy. The final knob in this
optimization problem is task partitioning; since in most cases
the amount of computing available at the edge is more powerful
than that of the vehicle’s, partitioning the tasks that need to
be executed through computational offloading can reduce the
end-to-end latency of the system.

A. Method Overview

A visual overview of the REFO method we have created to
accomplish this edge fusion task is shown in Fig. 1. In this
method, it is assumed that each vehicle has an on-board unit
(OBU) that can communicate with the RSU at the edge to fuse
its sensor data with other nearby vehicles; both the RSU and
the OBU are assumed to have computational capacity as well.
In this system, how much computation occurs at the OBU
versus at the RSU is dependent on the REFO action decision
which will determine which tasks to execute at the RSU and
which to execute at the OBU. Data reduction can be utilized in
the form of choosing not to send certain sensor data modalities
as well as choosing to compress the sensor data that has been
selected for transmission. Multiple object detection methods as
well as feature extractors and their associated fusion classifiers
exist in the ensemble fusion model and these components can
be compressed as chosen by the action decision framework.

Each component of REFO provides a trade-off space for
this optimization problem that makes having to simultane-
ously select the offloading level, fusion models, and amount
data/model compression a challenging task. Choosing to do
less computational offloading and execute more tasks at the
OBU increases total computational inference time but reduces
the wireless transmission latency. Choosing a more lightweight
object detector and feature extractor and/or utilizing model
compression also reduces the computational inference time but
at the cost of overall fusion accuracy and any data reduction will
reduce the transmission latency at the cost of fusion accuracy.
It is necessary to design a system that is able to intelligently
balance these distinct trade-offs simultaneous to make the
optimal action decisions for the current situation.
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Fig. 1: REFO method overview showing the different data pathways and decision points involved in achieving multi-modal
fusion in edge-based connected vehicle environments. The REFO action decision framework presented in Section IV-A is shown
in the red box and generates the REFO action decision which acts as a control signal for the associated tasks marked with red
asterisks. The ensemble fusion model presented in Section IV-B is shown in the green box at the RSU, but certain elements of
this model are also available to execute at the OBU (also shown in green boxes) to allow for task partitioning.

TABLE I: Summary of Key Notations with Descriptions

Notation Description

OBU On-board Unit
RSU Road-side unit
MEC Mobile Edge Computing
LE2E End to end latency of the REFO process
LOBU OBU computation inference latency
LRSU RSU computation inference latency
LUL OBU to RSU transmission latency
LDL RSU to OBU transmission latency
s Vector of states (contains state variables)
a Vector of actions (contains action variables)
v State/Action vector
S Set of State/Actions vectors
rtp Wireless channel throughput (state variable)
cmec RSU MEC computing capacity (state variable)
nobj Number of objects detected in the previous frame (state variable)
nveh Number of participating vehicles in the previous frame (state variable)
d Object Detector (action variable)
e Feature Extractor (action variable)
o Offloading level (action variable)
QoS Quality of service
EmAP Effective mean average precision

B. Problem Formulation

In this work, we aim to show that collaborative perception
can be achieved in real-time even with limited channel
throughput and computing power available. Our goal is to
create a method to choose the set of actions given information
about the current state of the environment so that accuracy
is maximized while ensuring that service is maintained at all
times. The choice of what actions (a) to take affects both the
accuracy and latency with the latency value also being affected
by the current state (s), so we will define two functions which
produce the associated accuracy and latency values as follows:

fAP (t)(a) = AP (t) (1)

fLE2E(t)(s, a) = LE2E(t) (2)

To formalize what should be considered real-time in collab-
orative perception, successful service delivery (D) for REFO
can be expressed as:

D(t) =

{
1, if LE2E(t) < τ.

0, otherwise
(3)

Essentially, this is defining an end-to-end latency threshold τ
which will act as the QoS requirement. As such, the overall
QoS for this system at some point in time t = N is defined
as:

QoS =
1

N

N∑
t=1

D(t) (4)

This metric represents the percentage of time that the actions
chosen by the REFO action decision framework were able to
achieve real-time collaborative perception.

Vehicular sensor fusion tasks are centered on creating
detections of objects in the vehicle’s surroundings or creating
temporal/spatial associations between objects. As such, standard
detection theory metrics such as precision and recall, which
represent ratios of true positive (TP) detections/associations to
false positives (FP) or false negatives (FN), will be used to
assess the accuracy. Specifically, precision (P) is defined by:

P =
TP

TP + FP
(5)

and recall (R) is defined by:

R =
TP

TP + FN
(6)

However, these sensor fusion models are parameterized by an
output threshold that lets the user adjust how sensitive the
model should be; high output thresholds will produce higher
precision but lower recall and vice versa. Average precision
(AP), which is the area below the precision-recall curve, is
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the most widely used metric for evaluating the performance
of this type of sensor fusion model since all thresholds are
represented in the precision-recall curve. More formally stated,
AP is defined as:

AP =

K∑
i=1

(Ri −Ri−1)Pi (7)

for all possible K output thresholds. For this REFO task, we
will define mean average precision (mAP) in the context of this
problem as the moving average of chosen actions associated
sensor fusion AP:

mAP =
1

N

N∑
t=1

AP (t) (8)

To evaluate end-to-end performance, a constrained optimization
problem is defined to express the conditions that are trying to
be met. The goal in this work is to choose the actions that
maximize the sensor fusion accuracy while ensuring QoS is
being met and as such the optimization problem is defined as
follows:

max
a

mAP (9a)

s.t. QoS = 1 (9b)

Considering this optimization problem, a new metric can be
defined which we have termed effective mean average precision
(EmAP) that simplifies this optimization using the fact that
QoS ∈ [0, 1] and thus can be used as an indicator function and
multiplied with the objective function to produce an equivalent
optimization:

EmAP = QoS ×mAP (10)

This metric accurately reflects what needs to be optimized
considering that the goal is to produce the most accurate
perception possible while still ensuring the QoS requirement
is met. The chosen actions cannot just maximize the fusion
accuracy as the loss in QoS due to the high latency of the
most accurate fusion models will prevent any acceptable EmAP
values. Similarly, always choosing very lightweight machine
learning models will lead to good QoS, but poor fusion accuracy
which will carry into poor EmAP performance. To perform
well, the action decision framework must be designed or trained
to choose the best performing fusion model for the current
conditions while also putting a very strong bias on ensuring that
the latency threshold is not exceeded. As such, the objective
of the REFO action decision framework will be to maximize
the EmAP.

For any method that is used to generate action decisions, it
is assumed that a selection choice will be provided for each
time step. In certain situations, such as when the wireless link
is completely lost, there may be no possible action decision
that will allow the collaborative perception system to execute
in the required latency; in these cases, the data point will be
discarded in performance evaluation as to not punish models
for exceeding the latency requirement when doing so is entirely
unavoidable.

Fig. 2: Time series diagram showing the different components
that make up the total end-to-end latency for a each time step
in REFO.

C. Latency Model

We model the end-to-end latency (LE2E) experienced by
the following equation:

LE2E = LOBU + LUL + LRSU + LDL (11)

(All terms used in (11) are explained in Table I). This equation
just shows all the different terms that sum up to create the total
end-to-end latency. Both LUL and LDL use a simple channel
delay model of transmission data size divided by channel
throughput, but the values for LOBU and LRSU are dependent
on which actions are selected and must be measured; the values
presented in this section and remainder of the paper are specific
to our hardware and choices of object detector, sensor fusion
model, and compression algorithms.

A visual diagram of how these latency accumulate to
complete this end-to-end fusion process can be seen in Fig.
2. For each time step, the process begins with each vehicle
producing it’s sensor data for that time step including any
sensor encoding needed. At the same time at the RSU, the
current channel state information is measured to determine
the instantaneous channel throughput and the action decision
process is executed immediately followed by transmitting the
action selection to each of the nearby participating vehicles.
By the time each vehicle receives the action decision, the
sensor data is ready to be processed and any corresponding
computation occurs. The output data for the corresponding
offloading level chosen is then transmitted from each vehicle
to the RSU; once all the participating vehicle’s data has been
received at the RSU, the remaining computation tasks for the
sensor fusion can take place before finally broadcasting the
fused results back to the vehicle’s OBUs to be ingested by the
ADAS.

The biggest challenge encountered in this REFO process is
dealing with the uncertainty in latency prediction. While certain
processes like sensor encoding and image compression have
low variance in their execution latency, the latency experienced
by wireless data transmission depends on the amount of data
to be transmitted and amount of throughput available while
the computation latency depends on how much input data
is present and which models are chosen. The challenge is
that at the start of each time step, only limited information



6

is available: the current channel throughput and the previous
time step’s information about the total number of participating
vehicles and total objects detected. Knowing the current channel
throughput is useful for determining how long it will take to
broadcast the action decision to all vehicles in the area of
the RSU, but the channel conditions will likely have changed
by the time the vehicles transmit their chosen data to the
RSU making it necessary to make predictions about the future
channel throughput at each time step. Similarly, with only
knowing information about the previous time step’s data and
not how many total vehicles will successfully transmit data to
the RSU this time step and how many objects will be detected
makes additional predictions necessary, though it is expected
that these values will not shift dramatically between successive
frames. This was a main factor in choosing a machine learning
approach to this problem, since machine learning models have
the ability to detect patterns and make predictions based on
these sorts of uncertainties and should outperform dynamic
programming or numerical optimization based methods.

Fig. 3: Block diagram of REFO showing the flow of data that
occurs in each time step. The REFO action decision framework
stores the previous state information to use a feature, as
represented by the return arrow at the top of the corresponding
block.

IV. METHODOLOGY

In this section, we present our methodology for generating
and executing action decisions in REFO. We will first introduce
our selections for offloading levels before describing the
action decision framework, which uses information about the
current conditions to predict the optimal action decision for
each time step. The later part of this section will discuss
our proposed ensemble fusion model; the ensemble fusion
model contains all perception and fusion abilities needed
for collaborative perception and can also be dynamically
compressed and partitioned. Each action selected by the action
decision framework corresponds to a particular execution
configuration of the ensemble fusion model. A block diagram
showing the data flow for REFO is seen in Fig. 3. This figure
shows a more simplified view of the data flow in REFO that
doesn’t include all possible data paths that occur between
the RSU and OBU for the ensemble fusion model as shown
in Fig. 1, while still displaying the process by which state
measurements and sensor data are transformed into sensor
fusion results.

For this work, we are only considering the use of RGB
cameras, depth sensors, and positional trackers as our sensor
modalities and the chosen sensor fusion task is object detection
association. As such, our implementation of the action decision

Fig. 4: Block diagram showing the three different offloading
strategies that are considered in this work: (a) Full, (b) Major,
and (c) Minor. These offloading levels determine how the
different layers of the ensemble fusion model get partitioned
between the OBU and RSU.

framework and ensemble fusion model will reflect these choices.
However, any set of sensor modalities could be used as input
if the corresponding sensor fusion task can be partitioned into
subtasks for the associated ensemble fusion model. Both the
action decision framework and the ensemble fusion model are
integral components of our REFO method and will be discussed
in detail for the remainder of this section. However, before
beginning this discussion we must first define the different
levels of offloading that we are utilizing.

A. Task Partitioning - Offloading Selection

In this work, there are three levels of computational offload-
ing that will be considered:

• Minor Offloading - All object detection and feature
extraction is done at the OBU. Only the fusion classifier
and REFO action decision framework are executed at the
RSU.

• Major Offloading - All object detection is done at the
OBU. Execution of feature extraction, fusion classifier,
and REFO action decision framework occurs at the RSU.

• Full Offloading - All computation is done at the RSU.
The differences between these three offloading levels can also

be seen in Fig. 4. Here we can see the affect this offloading
decision has on the amount of data being transmitted. The
amount of data transmitted over the wireless channel decreases
from Full Offloading to Major Offloading and decreases even
more significantly from Major Offloading to Minor Offloading.
The trade-off here is that the amount of time that is spent on
computational inference is inversely proportional to the amount
of data transmitted since more of the computational tasks are
occurring at the OBU, which is assumed to be much less
powerful than that of the RSU. As such, the amount of sensor
data generated by the vehicle and the wireless throughput will
have the largest factors on which level of offloading should be
chosen. The offloading level for each time step will be decided
by the action decision framework, which will be described in
the next subsection.

B. Action Decision Framework

In this section, we describe our REFO action decision
framework, with an overview of the framework shown in
Fig. 5. The action space (a) of the decision consists of three
elements: object detector choice (d), feature extractor choice (e),
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Fig. 5: Overview of the REFO action decision framework showing how an action is selected given the current state information;
input state action combinations go though action space reduction and latency prediction before the final action decision is
selected. The objective of this framework is to choose the action with the highest EmAP and its performance is largely dependent
on the accuracy of the latency prediction model.

and offloading level (o). For each object detector and feature
extractor the model as well as the compression level must be
chosen and for offloading the offloading level as well as the
data compression level must be chosen. Note that since none
of the fusion models used require raw RGB images as input,
compression does not need to be considered in the case of
minor offloading. The state space (s) consists of four elements:
current channel throughput (rtp), RSU mobile edge computing
(MEC) capacity (cmec), the number of participating vehicles
in the previous frame (nveh), and the total number of objects
detected by all vehicles in the previous frame (nobj). For our
REFO action decision framework, state-action pairs are created
to form vectors (v):

v = <rtp, cmec, nveh, nobj︸ ︷︷ ︸
state:(s)

, d, e, o︸ ︷︷ ︸
action:(a)

> (12)

which serve as the input and the output. For each time step, the
input for our REFO action decision framework (S) is generated
by combining all possible action space combinations with the
current state:

S = {v1, v2, ..., vN} (13)

Each vector vi in S has the same state space, but a unique
action space. The first step in our REFO action decision
framework is action space reduction, where the number of
action state combinations are reduced by removing vectors
from S that contain actions that have no possibility of being
selected (Fig. 5(a)). There are three types of action space
reduction that are conducted:

• Impossible Combinations - Remove any vi that are not
possible to execute. An example would be the action
choice to send only color histograms as visual features
when the chosen fusion model requires RGB images.

• Nonsense Combinations - Remove any vi that do not make
any sense to include. An example would be the action
choice to send RGB images when the chosen fusion model
only requires color histograms as its visual feature.

• Outliers - Remove any vi that are likely to be outliers.
For example, cases of sending raw RGB images with

very poor channel conditions and medium to high vehicle
density should be discarded.

The remaining state action combinations that remain after
action space reduction (S′) are used as input for the latency
prediction model fNN (Fig. 5(b)). A DNN is used as our
latency prediction network which consists of four hidden layers
with ReLU activation and batch normalization between each
and a sigmoid output layer. It is trained for 5 epochs using a
batch size of 512 and the ADAM [67] optimizer. The latency
prediction DNN predicts for each vi

′ in S′ whether it will meet
the QoS requirement or not. The state action combinations that
the latency prediction model predicts as having a latency less
than the QoS threshold form the set S′′:

S′′ = fNN (S′) (14)

The final step after applying the latency prediction model is to
choose the action combination from S′′ that maximizes the AP
(Fig. 5(c)). Since EmAP is the product of QoS and mAP, the
option v∗ that will maximize EmAP from S′′ should always
contain the actions with the highest associated AP since it is
assumed that S′′ does not contain any options that would not
meet the QoS latency requirement. More formally stated, since
it is assumed QoS = 1 ∀ v ∈ S′′ the action decision produced
by our REFO decision framework a∗ is defined as:

a∗ = argmax
a′′

[fAP (a
′′)] (15)

If there is ever a frame where the neural network predicts
that no action will be able to execute within the chosen latency
threshold, the lowest latency action decision is selected.

C. Ensemble Fusion Model

Once the REFO action decision framework has selected
the actions for the current time step, this information can be
forwarded to the vehicle’s OBU. The ensemble fusion model
is what embodies all of the trade-offs that are considered in
this problem and where the data reduction, model compression,
and task partitioning are being applied. As seen in Fig. 6(a),
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Fig. 6: The ensemble fusion model consists of an object detection (OD), feature extraction (FE), and fusion classification layer.
(a) Shows an example ensemble fusion model which has N object detectors and M feature extractors, with each of these
having the ability to be slimmed by a certain % of model compression (MC). (b) Shows a decision tree showing how the
different layers will be partitioned based on the offloading level chosen by the action decision framework.

there are three layers to this ensemble fusion model: Object
Detection, Feature Extraction, and Fusion Classification.

The entire ensemble fusion model is located at the RSU,
but the object detection and feature extraction layers will also
be available at each OBU. The object detection and feature
extraction layers are constructed very similarly with each con-
taining numerous models for accomplishing the corresponding
task which vary in complexity with all or some models having
additional compressed versions of themselves. Using these
compressed models further increases the action decision space
which helps provide more optimal solutions as the additional
granularity allows further refinement in evaluating the trade-
offs. The last layer is the fusion classification layer; here is
where the final sensor fusion takes place and the corresponding
classifier is chosen based on the output of the feature extraction.

The majority of the overhead in this model is contained in
the first two layers of object detection and feature extraction
and as such choosing the proper action for these two layers is
important as the effects of these actions are cascaded through
the entire model. For example, with the object detection layer
we must simultaneously decide which object detector to use,
what amount of model compression is needed if any, as well
as determine whether it should be executed locally at the OBU
or offloaded to execute at the RSU. By choosing the more
heavyweight object detector and utilizing low or no model
compression, more objects are going to be detected on average;
this is good for overall fusion accuracy, but more objects
detected means more data to be transmitted since more region
of interest (ROI) images were produced. On the other hand,
more lightweight object detectors and/or moderate to high
amounts of model compression will be more likely to fail to
detect some objects which will reduce the end to end latency
significantly, both in computational inference time but also in
transmission latency due to transmitting less ROI image data,
at the cost of reduced fusion accuracy for the missed objects.
There is a similar trade-off for the feature extraction layer,

Fig. 7: Overview of the data pathways of the action decision
framework and ensemble fusion model and their interac-
tion with each other at the RSU. The order that data is
received/transmitted is shown in red numbers on the right
which corresponds to the process described in Fig. 2

but instead of more or less ROI images being produced, it is
smaller or larger feature vectors that are used for the fusion
classification.

A more detailed view of the RSU from Fig. 1 is shown in Fig.
7, displaying the interaction of the action decision framework
and ensemble fusion model and the associated process that
occurs at each time step. If major or minor offloading are
chosen, this ensemble fusion model will be partitioned to
execute some layers at the OBU which reduces the amount of
data that needs to be transmitted over the wireless channel at
the cost of increased computational inference time; as such,
utilizing higher levels of offloading is more useful when the
wireless channel conditions are good. Additionally, if full or
major offloading is chosen, data compression can be applied
to the transmitted data. In any case, using an ensemble fusion
model provides a complete toolkit of knobs that should allow
for real-time collaborative perception in nearly any condition
given the presence of RSUs and participating vehicles.
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V. EXPERIMENTAL RESULTS

Now that we have presented our proposed REFO method,
including the action decision framework and ensemble fusion
model, we will show how they perform on real testing data.
We first describe the research setup used to collect this data
followed by a discussion on the action selections that were
chosen for testing and process of evaluating their execution
latency. Finally, the results of our framework on 5G and C-V2X
network traces as well as a comparison of our model with
related methods are presented to conclude this section.

A. Research Setup

Fig. 8: Plots showing the throughput of the three different
network traces that are being used as test scenarios.

The research setup used for this work is a hybrid between
real-world wireless throughput traces and data recorded in a
digital simulation environment. For the real-world wireless
communications data, we use both 5G and C-V2X communi-
cation standards for vehicles to enable the sensor sharing [68].
We chose C-V2X as it has one of the highest throughput of all
the current established vehicular communications standards, but
even so the channel throughput can be quite limited. Data was
recorded using C-V2X radios that we have set up on the UCSD
campus; a research vehicle equipped with a Commsignia OBU
kit [69] and a C-V2X OBU car antenna was driven along a
road near the RSU driving 10 mph. The RSU is mounted to a
light pole and consists of Commsignia RSU kit [70] and two
8m height C-V2X Urban Antennas. Both Commsignia kits are
powered by Qualcomm C-V2X 9150 radio [71] running 3GPP
Release 14 C-V2X standard [72]. The throughput that was
achieved using this setup is 0-3 Mbps, which is low compared
to emerging 5G networks or even current 4G LTE networks, but
does provide an opportunity to explore collaborative perception
in situations with more limited wireless networking (see our
previous paper for more information about our C-V2X setup
and data recording [73]).

For 5G networks traces, there are a number of open source
datasets that exist that include 5G network data in various
situations; [74] presents one such 5G dataset that includes
5G network traces from a moving vehicle and two example
traces were chosen for use as test sets: one where 0-30 Mbps of

Fig. 9: Example images from the virtual dataset used for testing
showing: (a) An overview of the virtual environment, (b) an
example of a positive object detection association and (c) an
example of a negative object detection association.

throughput is achieved (5G-1) and another where the throughput
varied between 0-300 Mbps (5G-2). These two networks traces
along with the C-V2X network trace that we recorded provide
three very different wireless network conditions to demonstrate
the robustness of our proposed system. Visualisations of these
three networks traces can be seen in Fig. 8.

Since we only had access to a single vehicle outfitted with
external sensors and a OBU, we needed to obtain sensor data
for the sensor fusion from another source. We have recorded
RGB image data from moving vehicles in the CARLA [75] self
driving simulator that can be used for this purpose [1]. While
the wireless channel conditions of the physical environment
are going to be different than that of the virtual simulation,
we are using the images from CARLA and treating them as if
vehicles in the real world were recording them.

For the proposed REFO method, the sensor fusion task is
not set in stone and instead will be whatever is chosen by
the end user. For this work, we are using object detection
association [1] as the sensor fusion task that the performance
evaluation will be based on. In this task, the goal is to determine
all associations between objects detected by different vehicles
to establish which objects were seen by multiple vehicles and
which objects were only seen by a single vehicle. The final
accuracy results, measured in AP, reveals how accurately the
fusion classifier was able to correctly label these associations;
this accuracy is affected by the choice of object detector, feature
extractor, and amount of data/model reduction. An overview
of the virtual environment that the images were recorded in
as well as example associations are given in Fig. 9; for each
example image pair, if the two images are of the same vehicle
they labeled to be a positive association, as shown in Fig. 9(b),
and if the image pair contains pictures of different vehicles
then it is labeled to be a negative association, as shown in
Fig. 9(c). The virtual data set that we are using for this work
has object association labels for ground truth provided. For
generating ground truth training data for the DNN within the
action decision framework, we test every action combination
using data from the vehicles in the virtual training data to
provide the number of vehicles and objects detected per frame
and sweep over all computing configurations (cc1 & cc2) and
wireless throughput values (0-300 mbps) for the remaining state
values. For each data point, if the particular action combination
produces a latency <τ then it is labeled True (1) and if the



10

TABLE II: All possible actions that can be selected. :% values represent the amount of data/model compression that is utilized
for that selection.

d → {0, 1, 2, 3} 0.YOLOv5x 1.YOLOv5l 2.YOLOv5m 3.YOLOv5s
e → {0, 1, 2, 3, 4, 5, 6, 7, 8} 0.ResNet-50:0% 1.ResNet-50:25% 2.ResNet-50:50% 3.ResNet-50:75% 4.MobileNet:0% 5.MobileNet:25% 6.MobileNet:50% 7.MobileNet:75% 8.Color Histogram
o → {0, 1, 2, 3, 4, 5, 6, 7, 8} 0.Full:0% 1.Full:25% 2.Full:50% 3.Full:75% 4.Major:0% 5.Major:25% 6.Major:50% 7.Major:75% 8.Minor

latency value ≥ τ then it is labeled False (0); accordingly
multiple different versions of the DNN were trained, one for
each of the chosen values of τ . Generating testing data is the
same process but instead of using a sweep of throughput values,
the data from the wireless traces seen in Fig 8 is used.

B. Action Selection

For this edge fusion task, we wanted to provide different
trade-off options for each computation task to create a usable
action space so that a machine learning model can learn
what the best options are for different state combinations.
YOLOv5 [76] was chosen as object detector since it is
both lightweight and accurate; additionally there are multiple
weights of the YOLOv5 model that have different amounts
of parameters which correspond to different levels of object
detection accuracy and execution latency; the 4 weights of
YOLOv5 that were chosen are:

1) YOLOv5s
2) YOLOv5m
3) YOLOv5l
4) YOLOv5x
For features extractors, we wanted to provide similar

accuracy/inference trade-offs and as such three different feature
extractors were chosen:

1) ResNet-50 [16]
2) MobileNet [77]
3) Color Histogram Extraction
The rationale between choosing these three models was to

choose a high (ResNet-50), medium (MobileNet), and low
(Color Histograms) complexity feature extraction method and
then use model compression to expand the high and medium
models to fill in the gaps in the decision space. We choose
color histograms as our low complexity model to provide very
low computation inference time as well as data size but could
have chosen lightweight multi-layer perceptron (MLP) DNN
models as well as other image descriptors [78] [79] or image
transforms [80] [81] if a larger decision space was needed.

The two deep CNN models can be compressed in a number
of ways, one being model slimming where a number of the
weights/connections within the neural network are removed to
provide a fast executing model at the cost of fusion accuracy
[60]. We consider compression for both compressing the models
as well as compressing the sensor data being transmitted from
the OBU to the RSU in the cases of Full or Minor offloading.
The different compression levels we are considering for these
two tasks are shown below:

1) 0%
2) 25%
3) 50%
4) 75%

The combinations of all object detectors, feature extractors,
data/model compression levels along with the offloading levels
described in Section IV-A form the set of actions a = (d, e, o)
that form the state-action pairs for the vectors v that form the
input set S of the action decision network. All the individual
actions that are available in our ensemble fusion model we are
testing with can be seen in Table II.

C. Evaluating Execution Latency and Sensor Fusion Accuracy

In order to simulate the latency experienced by the system in
terms of computational processing time, all feature extractors,
object detectors, fusion classifiers and the latency prediction
network were executed and averaged over 1000 inferences in
order to get an accurate estimate for the predicted amount of
computation time for each task. The computation tasks that are
most affected by the increasing in computing power, specifically
the GPU’s floating point operations per second (FLOPS), are
the deep convolutional neural networks (CNN) used for object
detection and feature extraction. As such, the inference time
varies significantly depending on the hardware used. For this
work, we are considering three levels of computing represented
by three different devices that we are executing the chosen
models on: NVIDIA Jetson TX2 (1.33 TFLOPS), NVIDIA
RTX 1080Ti (11.3 TFLOPS), and NVIDIA Tesla V100 (130
TFLOPS). With these three devices, two different computing
configurations are defined in Table III named CC1 and CC2.

TABLE III: Defining the two different computing configurations
that we are using for performance evaluation.

CC1: OBU = Jetson TX2 , RSU = RTX 1080Ti
CC2: OBU = RTX 1080Ti , RSU = Tesla V100

TABLE IV: YOLOv5 inference times on Nvidia Jetson TX2

Yolov5s Yolov5m Yolov5l Yolov5x
Latency (milliseconds) 76.31 166.44 300.88 534.14

The computation inference latency of these deep CNNs is
also affected by the batch size, which in the case of feature
extraction is how many ROI images are produced by the
object detector. This latency trade-off is shown in Fig. 10
and Fig. 11, showing how the execution latency of ResNet-50
and MobileNet change depending on the hardware used and
input batch size. The same trade-off is seen for object detection
in Fig. 12 which use raw RGB images as input; since the Jetson
TX2 is not being considered as RSU computing hardware, only
a object detection batch size of 1 is needed since the OBU
will at most have to process a single image per time step and
these values are shown in Table IV. Many of the inference
times for the Tesla V100 were available from NVIDIA [82]
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Fig. 10: MobileNet inference times on Nvidia RTX 1080Ti
and Jetson TX2

Fig. 11: ResNet-50 inference times on Nvidia RTX 1080Ti
and Jetson TX2

or the creator of the particular model [83] and any missing
values were interpolated.

The choice of hardware does not make as large of a difference
on inference time for the more lightweight tasks like the latency
prediction network. The inference times for different batch sizes

Fig. 12: YOLOv5 inference times on Nvidia RTX 1080Ti

Fig. 13: Latency Prediction DNN inference times on Nvidia
RTX 1080Ti and Jetson TX2

of the REFO action decision framework’s latency prediction
network are shown in Fig. 13. In the case of the latency
prediction network, the batch size is equal to the size of S′

which is the total number of state action combination that
remain after action space reduction. Even on the NVIDIA
Jetson TX2, our latency prediction DNN only takes about 2ms
with the maximum possible batch size. Similarly, the fusion
classification layer of the ensemble fusion model takes 2ms or
less on all hardware.

TABLE V: The different levels of data and model compression
that are being considered with the corresponding amount
of mAP reduction that is experienced by that particular
combination of feature extractor and compression.

ResNet-50 MobileNet
Data Compression: 25% 1.19% 1.23%
Data Compression: 50% 1.90% 1.91%
Data Compression: 75% 2.35% 2.41%

Model Compression: 25% 0.68% 0.23%
Model Compression: 50% 1.14% 0.46%
Model Compression: 75% 1.82% 1.16%

Each combination of object detector, feature extractor, and
compression level produces different accuracy results for this
fusion task; using more heavyweight object detectors and
feature extractors with little to no compression produces
better results, but the effects as more lightweight models
and more compression are chosen is not uniform. This result
can be seen in Table V, which lists the percentage in AP
reduction experienced by compression when averaged over
all testing configurations. While this table shows how model
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Fig. 14: Time series plots for two different combinations of computing configurations, network traces, and latency thresholds:
[CC1, C-V2X, 500ms] (a) and [CC2, 5G-2, 100ms] (b). The red lines show the state space for each time step while the green
show the action decisions chosen by REFO and blue shows the resultant latency and accuracy. The horizontal orange line in
the latency plot represents the latency threshold (τ ) for that scenario.

compression has a less detrimental effect on fusion accuracy
than compression, their benefits are quite distinct with the main
benefit of data compression being in reducing transmission
latency while model compression is reducing computational
latency.

The more lightweight object detectors actually produce better
fusion accuracy due to fewer objects being detected by the
object detector, but we wanted to make sure that the system
is not rewarded for potentially missing important detections
by always using a more lightweight object detector, so the
accuracy results were weighted according to the number of
images each object detector detected. Since YOLOv5x is the
most heavyweight object detector being considered in this work,
we assume this object detector produces a true set of detections
and will penalize the more lightweight YOLO models according
to how many fewer objects they detected.

D. Performance Evaluation

For the purpose of performance evaluation of our proposed
REFO method, we examine 2 different scenarios of com-
puting/network/latency threshold combinations to get some

perspective on how our REFO action decision framework
performs in these situations. The two configurations are:

1) Computing = CC1, Network = C-V2X, τ = 500ms
2) Computing = CC2, Network = 5G-2, τ = 100ms
In Fig. 14 we have presented two time series plots on these

two configurations which show the state space, actions selected,
and resultant latency and fusion mAP that were achieved
for each time step. For the latency plots, a horizontal line
is also included to show the latency threshold. As seen in
this figure, our model is able to successfully stay below the
latency threshold while actively adapting to the changing state
conditions; the ability to be just below the threshold for most
time steps shows that the system is optimizing the action
selection process well, but of course at the cost of the occasional
missed prediction where the latency threshold was exceeded.
Each subplot for the pair of plots is temporally aligned so
that the vector v chosen by the action decision framework
can be seen for each time step. For example, at t = 0 in the
[CC2, 5G-2, 100ms] plot in Fig. 14(b) the chosen vector is
v∗ = <9.426mbps,CC2, 10, 18, Y OLOV 5x,MobileNet −
75%,Minor>.
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TABLE VI: The different static baselines used for performance evaluation.
Object Detector Feature Extractor Data Compression Model Compression Offloading Level

Low latency action decision - aL YOLOv5s Color Histogram 0% 0% Minor
Medium-Low latency action decision - aML YOLOv5m MobileNet 0% 50% Minor
Medium-High latency action decision - aMH YOLOv5l MobileNet 50% 0% Major

High latency action decision - aH YOLOv5x ResNet-50 0% 0% Full

TABLE VII: Performance comparison showing the EmAP results of different methods tested on various configurations of
wireless network conditions, latency thresholds, and computing configurations.

Computing Config. 1 (CC1) Computing Config. 2 (CC2)
Network = C-V2X τ=500ms τ=250ms τ=500ms τ=250ms τ=100ms τ=50ms

aL 0.621 0.621 0.621 0.621 0.621 0.621
aML 0.476 0.089 0.557 0.397 0.144 0.028
aMH 0.102 0.000 0.364 0.119 0.028 0.004
aH 0.000 0.000 0.000 0.000 0.000 0.000

Greedy 0.579 0.564 0.645 0.579 0.554 0.539
RF [84] 0.657 0.685 0.727 0.705 0.677 0.704

GBT [85] 0.604 0.678 0.657 0.661 0.688 0.693
ALTO [54] 0.069 0.010 0.139 0.041 0.011 0.007
Edgent [65] 0.562 0.670 0.580 0.583 0.618 0.724

REFO-ADF* 0.767 0.712 0.816 0.800 0.764 0.757
(a) EmAP results for the C-V2X network trace.

Computing Config. 1 (CC1) Computing Config. 2 (CC2)
Network = 5G-1 τ=500ms τ=250ms τ=500ms τ=250ms τ=100ms τ=50ms

aL 0.621 0.621 0.621 0.621 0.621 0.621
aML 0.732 0.639 0.740 0.743 0.698 0.421
aMH 0.632 0.000 0.755 0.686 0.342 0.050
aH 0.012 0.000 0.020 0.000 0.000 0.000

Greedy 0.680 0.690 0.753 0.753 0.642 0.251
RF [84] 0.578 0.563 0.847 0.771 0.693 0.652

GBT [85] 0.554 0.558 0.848 0.739 0.580 0.675
ALTO [54] 0.422 0.152 0.467 0.375 0.213 0.074
Edgent [65] 0.512 0.463 0.831 0.673 0.498 0.563

REFO-ADF* 0.816 0.772 0.863 0.856 0.846 0.792
(b) EmAP results for the 5G-1 network trace.

Computing Config. 1 (CC1) Computing Config. 2 (CC2)
Network = 5G-2 τ=500ms τ=250ms τ=500ms τ=250ms τ=100ms τ=50ms

aL 0.621 0.621 0.621 0.621 0.621 0.621
aML 0.759 0.726 0.759 0.762 0.742 0.712
aMH 0.756 0.000 0.787 0.780 0.647 0.248
aH 0.235 0.049 0.444 0.214 0.034 0.000

Greedy 0.763 0.423 0.811 0.649 0.393 0.108
RF [84] 0.632 0.552 0.867 0.852 0.794 0.663

GBT [85] 0.621 0.519 0.862 0.852 0.754 0.659
ALTO [54] 0.616 0.349 0.641 0.593 0.377 0.230
Edgent [65] 0.476 0.428 0.861 0.854 0.707 0.541

REFO-ADF* 0.828 0.780 0.869 0.868 0.857 0.839
(c) EmAP results for the 5G-2 network trace.

*Our proposed model

One thing that stood out about our model’s action decision
is that it selects minor offloading for every single time step in
both of these situations, which is why a plot with this value
is not represented in Fig. 14. Since the difference in data is
so large between major and minor offloading (transmitting
RoI images versus transmitting feature vectors), there are only
a small percentage of cases where full or major offloading
actually improve the end-to-end latency of the system and as
such our latency prediction model has learned to almost always
choose minor offloading. For major and full offloading to be a
more effective tool in REFO, there would need to be a larger
difference in the computing power between that of the OBU

and RSU, as well as higher levels of wireless throughput than
what we are considering in this work. However, there is a
large amount of adaptation achieved by our model in terms
of object detector and feature extractor choices which allow
the model to perform well in both scenarios even though the
network type, computing configuration, and latency threshold
are different.

To further validate the performance of our method, we
implemented a number of alternate methods to compare their
performance with that of our model; the full results of these
comparisons can be seen in TableVII and will be discussed
in the remainder of this section. While we presented detailed
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results from our method in two different scenarios, we wanted
to ensure that our model would continue to perform well
in all scenarios. As such, we have tested the EmAP of our
model over all permutations of computing configurations [CC1,
CC2], latency thresholds [500/250/100/50ms], and networks
conditions [C-V2X, 5G-1, 5G-2]. This produces 24 different
scenarios, but we excluded the scenario of CC1 and 50/100ms
thresholds since this computing configuration was too weak for
these latency thresholds. We will be using the same ensemble
fusion model for all methods as well as training/testing data
sets for all models that require training. Since it is just the
action decision process that we are comparing, we will refer
to our method as REFO-ADF to show that we are comparing
the REFO performance measured im EmAP our our action
decision framework (ADF) compared to other methods when
used in place of our ADF.

Four static models were created to act as performance
baselines and are defined in Table VI. The lowest latency
action decision (aL) is the main performance baseline for
determining how successful a model is. This is because the
EmAP performance of aL will never change by definition of the
EmAP metric; if there is a situation where even aL will exceed
the latency threshold then no action exists which can satisfy
the QoS for this time step and the data point is discarded for
EmAP calculations. As such, the EmAP for aL will be .621 for
all cases. Since this level of performance can be achieved by a
static model, the expectation is that models that can successfully
adapt to the changing conditions can provide more optimal
levels of performance. The other rows at the top of each table
show the other three static action selection strategies, whose
performance varies greatly depending on the situation. aH
however performs poorly in most cases; this is due to the fact
that full offloading is used in this strategy which does not
work well for situations with low throughput since all sensor
data will be sent to the RSU with no computation occurring
at the OBU except data compression if selected. aH utilizes
full offloading, no compression, and uses an uncompressed
ResNet-50 as the feature extractor so the only situations where
this is possible is when the throughput is high (> 50 Mbps)
such as in 5G-2 (Table VIIc). Additionally, a greedy decision
method was created that uses the channel conditions to make
a decision about which of the four static method should be
used at each time step.

Two ensemble learning methods are also employed with the
Random Forest [84] and Gradient Boosted Tree [85]. These
decision tree based machine learning methods provide a non-
neural network comparison for our model that does not consume
a massive amount of training time or computing resources; they
do not perform as well as our proposed neural network based
model, but they do provide competitive levels of performance
across the majority of test configurations. In addition the these
two off-the-shelf methods, we also implemented two methods
from related works to examine how well these methods would
preform when tested in our created testing scenarios. One of
these is an adaptive task offloading method (ALTO) [54] and
the other is an AI-enabled edge task partitioning and model
compression algorithm (Edgent) [65]. As seen in the table,
our proposed REFO methodology is able to outperform all

comparison models in terms of the EmAP metric. The ALTO
method is based on the multi-armed bandit algorithm which
proved to be effective for the task partitioning and offloading
decisions in vehicular edge networks, but does not perform so
well in choosing what action to select in REFO; part of the
reason for this is because the actions become more likely to
be selected the longer they go without being selected in the
multi-armed bandit, which is not a good model trait for this
particular problem. Edgent performs well in the easy cases of
high throughput, computing and latency threshold, but falls
behind the machine learning based methods in other cases.

We provide a visual representation of the results from Table
VII in Fig. 15. This figure shows the results of each method
averaged over the 3 different network conditions providing a
visual summary of the testing results over all 18 test cases.
As is consistent with Table VII, the REFO-ADF line is the
highest on the graph with a sizable margin over the next best
method in all 6 computing/threshold configurations.

Fig. 15: Results of all of the different action decision models
averaged over the three network traces.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed REFO, a method for achieving
multi-source sensor fusion for collaborative perception in
a connected vehicle environment even with highly varying
wireless channel and limited computation capacities. We
implemented a REFO action decision framework to determine
the best action decision given information about the current
state. We tested our method on both 5G and C-V2X network
traces and show that our REFO action decision framework is
able to outperform the best comparison methods by 9.6% on
average.

This work is an important first step in exploring collaborative
perception in connected vehicle environments that we plan on
continuing as part of our smart transportation research1. While
the fusion models explored in this work only use positional and
RGB image data, we plan to incorporate other models that can
utilize additional sensor modalities such lidar and/or radar data
or even telematics/telemetry data from the vehicle and explore
the challenges of heterogeneous sensor fusion. Additionally, we
want to improve the intelligence of the REFO action decision

1http://cwc.ucsd.edu/research/cellular-vehicle-everything-c-v2x
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framework to incorporate environmental context information
such as the weather or driver state information that can further
improve the performance of the system as well.
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