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Abstract—The Center of Mass (CoM) position of the human 
body is an important indicator when evaluating a person’s balance 
ability. Traditionally the CoM position is measured using 
laboratory-grade devices like a force plate, which is expensive and 
inconvenient for home use. In this paper, we propose a deep 
learning-based framework that uses a single depth camera to 
estimate the CoM position of a human subject. The proposed 
framework takes the depth image captured by the depth camera as 
input, and uses supervised learning to estimate the subject’s 
horizontal CoM position. The model is trained and tested on data 
collected from multiple subjects in various postures. Evaluation 
results demonstrate the high accuracy of the proposed approach in 
estimating the CoM of existing subjects or a new subject. Compared 
with existing CoM estimation techniques, the proposed framework 
is easy to set up and does not need any subject identification process, 
which makes it convenient for home use. The proposed framework 
can be used as a portable and low-cost tool for CoM measurements 
and can enable automated balance evaluation at home. 

Keywords—Center of Mass, Center of Pressure, Convolutional 
Neural Networks, Balance Evaluation, Deep Learning 

I. INTRODUCTION 

The Center of Mass (CoM) position of the human body is an 
important indicator when evaluating the balance ability. For the 
3D position of human’s CoM, the horizontal CoM (i.e., the 
projection of CoM on the ground) is even more important and 
often used to evaluate the progress of rehabilitation programs, 
predict fall risk for people with mobility problems [1, 2], etc. For 
example, the static body sway (i.e., the range of horizontal CoM 
in static upright posture) is a clinically relevant activity parameter 
to assess postural balance across a wide spectrum of patient 
populations [3]. Since the CoM position of the human body 
cannot be directly measured, the Center of Pressure (CoP) of the 
ground reaction force is measured instead. According to 
Newton’s second law, the CoP should coincide with the 
horizontal CoM position when the subject is in a stable posture. 
Traditionally, a laboratory-grade force plate is used to measure 
the CoP. However, due to its high cost and complicated setup 
procedure, the force plate is primarily limited to laboratory use. 
The Wii Balance Board (WBB) is a device designed by Nintendo 
for balance-related games. It can calculate the CoP from the 
vertical ground reaction forces measured by four pressure sensors 
placed at its four corners. Bartlett et al. have validated that the 
error of CoP measurements by the WBB is within 5 mm [4]. 
Because of its low cost, portability, and high accuracy in CoP 

measurement, the WBB has been increasingly used as a 
replacement of the force plate in many studies [5, 6]. 

However, the method of using a force plate or WBB to 
measure the CoP and taking it as the horizontal CoM works only 
when the force plate or WBB is placed on a horizontal and firm 
plane, which limits its application. In balance evaluation, we 
often need to test the subject’s balance ability on different surface 
types (e.g., the incline ramp, or the foam). Based on the fact that 
the CoM position of the human body is determined by some body 
parameters (e.g., body shape and density) and pose, people have 
proposed to use body parameters and pose to estimate the CoM 
position. Initially, the kinematic method is proposed by Winter 
[7] to estimate the CoM of the whole body as the weighted sum 
of the CoM of body segments. The weight of each segment is 
taken from previous anthropometric studies and therefore not 
personalized for each subject. To enable subject-specific CoM 
estimation, Chen et al. propose to measure the size of each body 
segment with a measuring tape and use an optimization method 
to estimate the density of each segment [8]. However, modeling 
the human body as geometrical segments (e.g., frustum) is not 
accurate. Later, Cotton et al. propose the Statically Equivalent 
Serial Chain (SESC) model for CoM estimation [9]. The body 
parameters of each subject are estimated from an 
identification/calibration process, for which the subject needs to 
perform multiple static postures. To achieve identification-free 
CoM estimation, Kaichi et al. recently propose a voxel 
reconstruction approach [10], where five cameras are used to 
reconstruct the subject’s 3D body and the CoM is estimated by 
assigning weights to all body parts. However, the five cameras 
need to be carefully calibrated, which limits its application for 
home use. 

With the rapid development of computer vision technologies 
in recent years, more and more vision-based models have been 
proposed to learn and predict some human-related activities from 
images or videos. Kahou et al. propose to recognize the facial 
expression of a human from a video sequence [11]. Alarrai et al. 
develop a fall prediction framework for the elderly using a depth 
camera [12]. Inspired by the vision-based techniques, we propose 
to learn the body parameters (size, density, etc.) from a depth 
image of the subject and use deep learning to estimate the 
horizontal CoM position of the subject. We have selected the 
depth camera instead of a RGB camera because the depth map 
captured by the depth camera provides more information about 
the subject’s pose in the depth direction, which is essential in 
CoM estimation. Besides, depth cameras are color and texture 



invariant and work in low light conditions [13]. Fig. 1 shows the 
architecture of our proposed CoM estimation framework, which 
is built using Convolutional Neural Networks (CNN) and trained 
using data collected from multiple subjects in various postures. A 
WBB is used to measure the ground-truth CoP which is 
equivalent to the horizontal CoM in stable postures. Please note 
that this paper discusses the CoM estimation for stable postures. 
We will extend the proposed technique to estimate the CoM 
position for unstable postures in our future work. The WBB is 
used only for collecting the ground-truth CoP in the training 
process. Once the model is trained, only the depth camera is 
needed to estimate the subject-specific CoM position for home or 
clinical use. The depth camera (e.g., Microsoft Kinect) is anyway 
necessary in most automated training systems for its ability in 
skeleton tracking and motion capture [14, 15]. By using the CoM 
estimation model proposed in this paper, the CoM position can 
also be tracked without any extra device. Evaluation results 
demonstrate the high accuracy of the proposed method in 
estimating the CoM of existing subjects or a new subject. By 
using a single depth camera that does not need complicated 
calibration or subject identification, the proposed framework can 
be used as a portable and low-cost tool for CoM measurements 
and therefore enable automated balance evaluation at home. 

 
Fig. 1. The training and application process of the proposed CoM estimation 

framework. 

The remainder of this paper is organized as follows: Section 
II reviews related work about CoM estimation in more details. 
Section III introduces the devices used in the proposed 
framework. In Section IV, we discuss the details in the proposed 
CoM estimation approach. Section V presents the experimental 
results. Section VI concludes the paper and discusses future work. 

II. RELATED WORK ON COM ESTIMATION 

While we have briefly discussed the related work on CoM 
estimation in Section I, we next explain the most relevant 
techniques in more details, pointing out their disadvantages and 
the need and differentiation of our proposed technique. 

Winter’s method: Traditionally, people use the kinematic 
method proposed by Winter [7] to estimate the CoM of a human. 
The human body is represented by 16 segments and the position 

of each segment is tracked by a marker-based motion capture 
system. The CoM of the whole body is calculated as 
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where mi and CoMi are the mass and CoM of the i-th segment. 
The information needed for this calculation is taken from 
previous anthropometric studies. However, such information may 
differ in subjects of different age, sex, and fitness level, etc. 
Therefore, this method is not able to provide subject-specific 
CoM estimation. 

The optimization-based method: To achieve subject-
specific CoM estimation, Chen et al. propose to model the human 
body as some geometric shapes (e.g., modeling the neck as a 
frustum) and measure the proximal and distal circumference 
lengths for each segment with a measuring tape [8]. They use the 
Vicon motion capture system [16] to track the subject’s kinematic 
data during static postures and force plates are used to measure 
the CoP as the ground-truth horizontal CoM. Then the body 
parameters of a subject are calculated using an optimization-
based method and used for the estimation of CoM. This method 
requires the measurements of body size for each subject, which is 
inconvenient. Moreover, modeling the body segments as 
geometrical shapes (e.g., frustum) is not accurate. 

The SESC model: Cotton et al. propose the SESC model 
which translates the human’s mass distribution to the geometry 
of a linked chain [9]. The subject-specific SESC parameters are 
obtained in an identification phase, for which the subject should 
perform 14 static postures. The posture is tracked by the motion 
capture system Vicon [16] and the horizontal CoM position is 
measured by a force plate. Gonzalez et al. propose that the 
estimation error of this method can be further reduced by 
assuming the bilateral symmetry of the human body and using an 
identification phase with 40 static postures [17]. They have also 
conducted comprehensive study using low-cost sensors Kinect 
and WBB that can be easily set up inside a patient’s home. The 
estimation errors using Kinect and WBB have been shown to be 
comparable to those obtained using high-end equipments. Later, 
Conzalez et al. propose to use a Kalman filter and visual feedback 
in the identification phase to further reduce the estimation error 
[18]. However, the identification phase required by the SESC 
method (about 8 minutes) needs to be conducted each time when 
a new subject comes or the mass distribution of an existing 
subject has changed, which limits its application. 

Voxel reconstruction method: To avoid complicated 
identification phase on each subject, Kaichi et al. propose the 
voxel reconstruction approach [10], where five cameras are used 
to capture multiple views of the human body. Then they use a 3D 
reconstruction approach to reconstruct the subject’s body and 
further segment the body into 9 parts. The CoM of the whole body 
is estimated by assigning weights to different body parts. The 
weights of each part are from previous anthropometric studies. 
As discussed earlier, the difference of body size and density in 
different subjects are the main challenges in the subject-specific 
CoM estimation. By reconstructing the 3D body, this method 
solves the problem of difference in body shapes. However, it still 
fails to consider the difference of body density since it uses the 
density information from previous studies. Moreover, it uses five 



cameras that need to be carefully calibrated for 3D construction, 
which is not convenient for home use. In comparison, our 
proposed framework uses a single depth camera and does not 
need any complicated calibration or subject identification 
process. The body parameters of each subject can be learned 
through supervised learning and used to estimate the subject-
specific CoM. 

III. DEVICES: KINECT AND WII BALANCE BOARD 

A. Depth Camera in Kinect 

Kinect is a motion capture sensor that consists of a RGB 
camera and a depth camera [19]. The depth map (424 by 521 
pixels) captured by its depth camera represents the distance of 
each pixel from the sensor. Based on the depth map, we use the 
method proposed in [13] to remove the background to obtain the 
user depth map, and extract the user skeleton that is composed of 
25 joints. Fig. 2 shows an example of the original depth map and 
the user depth map with the skeleton overlay. 

  
Fig. 2. Depth map captured by the depth camera of Kinect. Left: full depth 

map. Right: user depth map and the skeleton overlay. 

B. Wii Balance Board 

The Wii balance board (WBB) consists of four pressure 
sensors located at the four corners of the board (see Fig. 3). When 
a subject stands on the board, the four pressure sensors measure 
the vertical force applied to the four corners and the Center of 
Pressure (CoP) can be calculated. Fig. 3 shows the WBB and the 
coordinate system we use in this paper. Suppose that the board is 
placed on a horizontal ground. We define the x and y axis as the 
length and width direction of the board, and the z axis in the 
upright direction. The origin is located at the center of the board. 
Given the forces/pressures that the four sensors measure, the 
subject’s CoP (x, y) coordinate can be calculated as 
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where L and W are the length and width of the board, and Pi is the 
force measured by the i-th pressure sensor. Note that all postures 
discussed in this paper are stable postures, for which the CoP 
position measured by the WBB is equivalent to the horizontal 
CoM position of the subject. Therefore, we will use horizontal 
CoM position to refer to the CoP position measured by the WBB 
in the rest of this paper. 

Several studies have explored the accuracy of the WBB in CoP 
measurement and found that the CoP location obtained by a WBB 
and a laboratory-grade force plate are fairly similar, with an offset 

difference smaller than 5 mm [4, 20]. Besides, the other 
advantages of the WBB such as low cost and portability makes it 
a good tool for CoP measurements for clinical or home use. 
Therefore, we use the horizontal CoM measurements provided by 
the WBB as the ground truth to train our model. 

  
Fig. 3. Left: the WBB and its four pressure sensors. Right: the 3D coordinate 

system shown in the depth image. 

IV. CENTER OF MASS ESTIMATION FROM A DEPTH IMAGE 

A. Input and Output of the Model 

As discussed in Section I, we would like to develop a model 
that takes the full depth map captured by a depth camera as input 
and estimates the horizontal CoM position of the subject. To train 
the model, we have collected the depth maps and the ground-truth 
CoM positions measured by the WBB from multiple subject with 
different stable postures (see Fig. 1). (More details about the data 
collection process will be introduced in Section V-A). The depth 
map and the ground-truth CoM position of a subject in a frame 
constitute a data sample: (Depth map, CoMx, CoMy). In the 
training process, we use all collected samples to train and validate 
the CoM estimation model. 

Details about the CoM estimation model is shown in Fig. 4. 
We use the algorithms proposed in [13] to extract the user depth 
map and the user skeleton with 25 body joints from the full depth 
map. To help the model distinguish between different body parts 
(since different body parts may have different densities), we 
propose to provide the model with information about the joint 
positions, which are represented by joint heatmaps. The heatmap 
of a joint has the same size of the depth map and each pixel in the 
heatmap represents the probability of the joint located at this 
position (see Fig. 4). In our proposed framework, we use 2-D 
Gaussian distribution to calculate the probability. The two 
dimensions of the Gaussian distribution are assumed to be 
independent and have equal standard deviation 0. Following the 
coordinate system shown in Fig. 3, the width and height direction 
of the depth image are the x and z axis. For a joint i (1  i  25), 
we use the algorithm proposed in [13] to obtain the 2-D position 
of this joint on the depth map as (xi, zi). Its heatmap Hi(x, z) is 
calculated as 
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Fig. 4 shows the heatmaps of two joints (spine_mid and 
right_foot) as an example. Then a CNN-based model takes the 
user depth map and the joint heatmaps as input and estimate the 
CoM position of the subject, which is the output of the model. As 
discussed in Section III-B, the horizontal CoM coordinates 
measured by the WBB are continuous values (x, y), which make 



the CoM estimation a regression problem. However, Tompson et 
al. have shown in the problem of pose estimation that direct 
regression of pose coordinates from images is a highly non-linear 
problem and may be difficult to learn the mapping [21]. To 
improve learning, we propose to quantify the CoM coordinates 
into discrete values. The CoM coordinates are discretized 
uniformly in the x and y direction, resulting in Nx x Ny classes. By 
discretizing the continuous CoM coordinates, we cast the highly 
non-linear problem of direct CoM coordinate regression to a more 
manageable form of prediction in a discretized space.  

 
Fig. 4. The proposed CoM estimation Framework. 

B. Data Augmentation 

In deep learning, an effective way to improve learning and 
reduce overfitting is increasing the amount and diversity of 
training data, which is called data augmentation. Traditional data 
augmentation methods used in computer vision include flipping, 
rotating, translating the image, and adding random noise to the 
image. The above techniques work great in image classification 
problems as they will not change the image categories. However, 
the CoM position of the subject may be different by using these 
operations. For example, a subject who is leaning to the left has a 
positive x value in his CoM position. If we flip his depth image, 
he would be leaning to the right and the x value of his CoM will 
be different. Therefore, the traditional data augmentation 
techniques cannot be directly applied in our dataset. To solve this 
problem, we propose to train two different models for the x and y 
component of the CoM separately. Different data augmentation 
methods are applied to the two components as follows. 

x component of the CoM: 1) Adding a random depth value 
to the user body in the user depth map. This operation is identical 
to shifting the user body in the y direction and will not change the 
x value of the CoM. 2) Randomly shifting the user body in the 
user depth map in z direction. This operation will also not change 
the x value of the CoM. 

y component of the CoM: 1) Randomly shifting the user 
body in the user depth map in the x direction. 2) Randomly 

shifting the user body in the user depth map in z direction. Both 
operations will not change the y value of the CoM. 

Note that the user’s joint positions (and the joint heatmaps) 
also need to be processed in the same manner as the user body 
(i.e., shifting the same amount and adding the same depth value). 

C. CNN-based Network Architecture 

For the CoM estimation model, we propose to use 
convolutional neural networks, which is widely used in 
computer vision problems for its advantages in parameter 
sharing, feature extraction [22], etc. The proposed convolutional 
unit is shown in Fig. 5, which consists of a Convolutional (Conv) 
layer [23], a Batch Normalization (BN) layer [24], a Rectified 
Linear Unit (ReLU) layer, and a max Pooling layer.   

The complete network architecture is also shown in Fig. 5. 
We use five Conv units to extract features from the original depth 
images. As discussed in Section IV-A, the joint heatmaps are also 
used as input of the model. The joint heatmaps are downscaled 
and concatenated with the activation map after the second Conv 
unit. We choose the activation map after the second Conv unit 
instead of the original user depth map because it contains higher-
level features of the subject’s posture. After the five Conv units, 
we use two Fully Connected (FC) layers, with the first one 
followed by a BN and a ReLU layer and the second one followed 
by an Argmax layer to predict the class of the discretized CoM. 
As discussed in Section IV-A, the continuous CoM coordinates 
are discretized into some classes, so the proposed model will 
estimate the correct class of the CoM coordinates. 

The loss function of this problem is defined as the cross 
entropy of the ground-truth CoM class and the predicted class of 
the CoM as 
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where Li is the encoding for class i in the ground-truth CoM and 
Si is the softmax output of class i in the estimated CoM. 
However, unlike traditional image classification problems that 
use one-hot encoding for the ground-truth label, we propose to 
use Gaussian-distributed heatmaps for the following reasons. 
Suppose k is the ground-truth class for a sample (e.g., the x value 
in a subject’s ground-truth CoM is discretized as class k), its one-
hot encoding is 
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Fig. 5. The proposed network for CoM estimation. 



Fig. 6 gives an example of the one-hot encoding: only the correct 
class k is encoded as 1 and all the other classes are encoded as 0. 
In image classification problems, the ground-truth label for an 
image is a categorical feature and all the incorrect classes (i  k) 
should be considered equally. Therefore, the one-hot encoding is 
an effective way to encode the ground-truth label. However, in 
the problem of CoM estimation, the ground-truth class of CoM is 
discretized from its continuous value, so the incorrect classes 
should be penalized differently based on their distance to the 
ground-truth/correct class. Therefore, we define a Gaussian-
distributed heatmap to encode the ground-truth CoM as 
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where  is the standard deviation of the Gaussian distribution. 
Fig. 6 shows an example of the Gaussian heatmap. The 
probability of the true class k has the highest value 0.20 and all 
the other classes are encoded based on their distance to the true 
class k. The CoM heatmap represents the confidence of each class 
as the ground truth. In this way, the network can be trained to 
adjust its output to get closer to the true class in the learning 
process. 

 
Fig. 6. One-hot encoding and Gaussian-distributed heatmap for the CoM 

ground-truth (k is the true class). 

V. EXPERIMENTAL RESULTS 

This section evaluates the performance of the proposed CoM 
estimation framework. First, we will introduce the data 
collection process. Second, we present the implementation 
details we use when training the model. Finally, we show the 
experimental results on the collected dataset. 

A. Data Collection 

In order to obtain a comprehensive dataset that covers as 
many postures as possible, we define the following postures on 
three body parts. 

Trunk: keep it upright, or lean to the left/right/front/back 
with different angles. 

Legs: squat with different angles, stand on one leg. 

Arms: different positions of the left and right arm. 

We have collected data from 21 subjects (age 23 ~ 62, 13 
males, 8 females). Each subject was asked to stand on a WBB 
and slowly move the body to cover different postures on the 
three body parts, while maintaining his/her balance. The WBB 
recorded the CoP position, which is equivalent to the horizontal 
CoM position as discussed earlier. A Kinect sensor was placed 
in front of the subject to capture the depth images. The WBB and 
Kinect was synchronized to record the depth map and the 
horizontal CoM on the same timestamp, with a framerate of 30 
frames/second. The depth map and the corresponding horizontal 
CoM position (CoMx and CoMy) in a frame constitute a data 

sample. From the 21 subjects, we have collected about 65,000 
data samples in total. 

B. Implementation Details 

The depth image captured by the depth sensor of Kinect has 
the resolution of 424  512. Pixels in the depth map have the 
value range of [0, 1], with 0 representing the background and 
positive value representing the normalized depth of the pixel. 
For data augmentation, we use the range of [-40, 40] (pixels), [-
15, 15] (pixels), and [-0.2, 0.2] (depth value) for the random shift 
on x, y, and z (depth) direction (see Section IV-B). (We have 
selected these values as the range of the random shift to make 
sure that the user body will be not shifted out of the depth image.) 
For CoM discretization, we use 4 mm and 2 mm as the precision 
of the uniform discretization in the x and y direction. With the 
size of the WBB as 431  236 mm, the discretization leads to 108 
and 118 classes for the x and y component of CoM, respectively. 
In the heatmap of the ground-truth CoM, we use Gaussian 
distribution with standard deviation of 3 and 2, in the x and y 
direction. 

The CNN-based network includes five Conv units. We use 
8, 16, 32, 64, 128 channels for the Conv layer in the five Conv 
units respectively. The number of channels is selected 
empirically to extract as much features from the images as 
possible while not introducing too many parameters. For the BN 
layer, we use 0.9 as the BN momentum. The first FC layer has 
246 neurons and the second FC layer has N neurons where N is 
the number of discretized CoM classes (Nx =108 and Ny = 118). 
When training the network, we use the batch size of 64 and a 
learning rate of 5e-4. The Adam optimizer [25] is used to 
minimize the cross entropy loss defined in (5). 

C. CoM Estimation Results 

Evaluation metrics: To evaluate the performance of the 
proposed model, we calculate the Root Mean Squared Error 
(RMSE) between the ground-truth CoM class and the estimated 
class as 
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where Gj and Ej are the ground-truth class and the estimated class 
for sample j and M is number of samples. Since the RMSE 
represents the average error in estimating the CoM class, we 
define the average error in CoM estimation as the product of the 
RMSE and the discretization precision (i.e., 2 mm and 4 mm for 
the x and y direction). 

To validate the proposed CoM estimation approach, we use 
two different modes to train and test the proposed model. i) Test 
on existing subjects. All samples collected from the 21 subjects 
are randomly split into a training set (64%), a validation set (16%) 
and a test set (20%). The model is trained on the training set and 
parameters that produce the best performance (i.e., the lowest 
loss) on the validation set are selected as the optimal parameters. 
Then the model with the selected optimal parameters is applied 
on the test set. ii) Test on a new subject. In this mode, we would 
like to evaluate the model’s performance on a new subject whose 
data have never been used for training and validation. Samples 
from 20 subjects are randomly split into a training set (80%) and   



 
Fig. 7. The CoM estimation errors on different postures using our proposed approach.

a validation set (20%). Data of the 21st subject are used as the 
test set. We compare the results of our proposed CNN-based 
approach with two state-of-the-art methods: the SESC method 
[9] and the voxel reconstruction method [10], using the 
estimation errors reported in their paper. The results are shown 
in Table I. (For the voxel reconstruction method, the authors do 
not report the estimation error on each direction and only the 
overall error on four postures is provided, which we summarize 
as 8 ~ 15 mm.) To highlight the advantages of our proposed 
approach, we also summarize the requirements of each method 
in Table I. 

TABLE I. COM ESTIMATION ERROR AND REQUIREMENTS OF DIFFERENT 
METHODS 

Method 
Error (mm) 

Requirements 
x  y  

SESC [9] 17 23 
Motion capture sensor. 8-

minute identification needed 
for each new subject. 

Voxel reconstruction [10] 8 ~ 15 
Five cameras. Camera 

calibration and 
synchronization needed. 

Ours (on existing subjects) 6.0 9.3 Single depth camera. No 
calibration or identification 

needed. Ours (on a new subject) 8.9 17.2 

From Table I we can see that our proposed approach achieves 
the lowest estimation errors when testing on existing subjects. 
For a new subject, the estimation errors achieved by our method 
are a little bit higher, but still outperform the SESC method in 
both x and y directions. Moreover, the SESC method requires an 
8-minute identification phase for each new subject, which is not 
convenient for home use. For example, the body parameters 
learned from previous identification phase for an existing subject 
may be inaccurate if the subject gains or loses weight. In 
comparison, our proposed approach does not need any subject 
identification process and is much more convenient for home use. 
For the voxel reconstruction method [10], we attribute its good 
performance to the use of multiple cameras. By using a single 
depth camera, our proposed approach captures only the front 
view of the human body and the shape of the back or side of the 
body is ignored. The voxel reconstruction method [10] uses five 
cameras to capture different views and reconstruct the full 3-D 
user body, therefore achieving good performance on the CoM 
estimation. However, the complicated calibration and 
synchronization among the five cameras makes it only suitable 
for laboratory use. In comparison, our proposed approach uses a 
single portable and inexpensive depth camera, which is 
convenient for home and clinical use, while achieving 
comparable accuracy results.  

To show the performance of our proposed approach on 
different postures, we classify the collected postures into six 
categories: standing, leaning forward, leaning backward, 
squatting, standing on the left leg, and standing on the right leg. 
For each posture type, the proposed CNN-based CoM estimation 
model is tested on existing subjects and a new subject separately. 
The estimation errors in the x and y direction are shown in Fig. 
7. For existing subjects, we can see that low estimation errors 
(less than 10 mm) can be achieved in both x and y directions for 
all the postures. For a new subject, the estimation errors in the y 
direction (i.e., the depth direction) is higher than the errors in the 
x direction. It is because only the front view of the user body can 
be captured by the single camera and the shape of the back of the 
user body may affect the CoM position on the depth direction. 
(The x component of the CoM is less affected due to the 
symmetry of the human body in the x direction.) Comparing the 
results on different postures, we can find that the estimation error 
is higher for squatting, leaning forward, and leaning backward 
than the other postures, which may be due to the occlusion 
problem. For example, the arm may occlude some parts of the 
trunk when the subject is squatting. In this case, the depth 
information of body parts that are occluded cannot be captured 
by the depth camera and the precision of the CoM estimation 
model will be affected. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a deep learning-based approach to 
estimate the horizontal CoM position of humans. The model 
takes the depth map captured by a single depth camera as input 
and the CNN-based network is trained to estimate the horizontal 
CoM position from the depth map. We have collected data from 
multiple subjects, with their depth images captured by a Kinect 
camera and the horizontal CoM position recorded by a WBB. 
Experiments demonstrate the superiority of our proposed 
approach over other CoM estimation techniques. In additional to 
the low estimation error, our proposed CoM estimation approach 
does not need any subject identification process, which is 
convenient for home and clinical use. For future work, we would 
like to explore the CoM estimation for unstable postures. 
Besides, we plan to extend the current CoM estimation 
framework to a balance evaluation system, to enable 
quantification of the balance ability in patients with mobility 
problems. 

ACKNOWLEDGMENT 

This material is based upon work supported by the National 
Science Foundation under grant No. IIS-1522125. 



REFERENCE 
[1] F. Wang, M. Skubic, C. Abbott, and J. M. Keller, “Body sway measurement 

for fall risk assessment using inexpensive webcams,” Proceedings of the 
IEEE Conference on Engineering in Medicine and Biology Society (EMBC 
2010), Buenos Aires, Argentina, Sep. 2010. 

[2] H. G. Kang, L. Quach, W. Li, and L. A. Lipsitz, “Stiffness control of balance 
during dual task and prospective falls in older adults: The MOBILIZE 
Boston Study,” Gait & posture 38.4 (2013): 757-763. 

[3] A. K. Mishra, et al. “Examining methods to estimate static body sway from 
the Kinect V2. 0 skeletal data: implications for clinical 
rehabilitation,” Proceedings of the 11th EAI International Conference on 
Pervasive Computing Technologies for Healthcare (PervasiveHealth 2017), 
Barcelona, Spain, May 2017. 

[4] H. L. Bartlett, L. H. Ting, and J. T. Bingham, “Accuracy of force and center 
of pressure measures of the Wii Balance Board,” Gait & posture 39.1 
(2014): 224-228. 

[5] P. Jogi, A. Zecevic, T. J. Overend, S. J. Spaulding, and J. F. Kramer, 
“Assessing and training standing balance in older adults: a novel approach 
using the ‘Nintendo Wii’Balance Board,” Gait & posture 33.2 (2011): 303-
305. 

[6] J. D. Holmes, M. E. Jenkins, A. M. Johnson, M. A. Hunt, and R. A. Clark, 
“Validity of the Nintendo Wii® balance board for the assessment of 
standing balance in Parkinson’s disease,” Clinical Rehabilitation 27.4 
(2013): 361-366. 

[7] D. A. Winter, Biomechanics and motor control of human movement. John 
Wiley & Sons, 2009. 

[8] S. C. Chen, H. J. Hsieh, T. W. Lu, and C. H. Tseng, “A method for 
estimating subject-specific body segment inertial parameters in human 
movement analysis,” Gait & posture 33.4 (2011): 695-700. 

[9] S. Cotton, A. P. Murray, P. Fraisse, “Estimation of the center of mass: from 
humanoid robots to human beings,” IEEE/ASME Transactions on 
Mechatronics 14.6 (2009): 707-712. 

[10] T. Kaichi, et al. “Estimation of Center of Mass for Sports Scene Using 
Weighted Visual Hull,” Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition Workshops (CVPRW 2018), Salt Lake City, 
UT, USA, Jun. 2018. 

[11] S. Ebrahimi Kahou, V. Michalski, K. Konda, R. Memisevic, and C. Pal, 
“Recurrent neural networks for emotion recognition in video,” Proceedings 
of the 2015 ACM on International Conference on Multimodal Interaction 
(ICML 2015), Seattle, Washington, USA, Nov. 2015. 

[12] R. Alazrai, Y. Mowafi, and E. Hamad, “A fall prediction methodology for 
elderly based on a depth camera,” Proceedings of the IEEE Conference on 
Engineering in Medicine and Biology Society (EMBC 2015), Milan Italy, 
Nov. 2015. 

[13] J. Shotton, et al. “Efficient human pose estimation from single depth 
images,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence 35.12 (2013): 2821-2840. 

[14] W. Wei, Y. Lu, E. Rhoden, and S. Dey, “User performance evaluation and 
real-time guidance in cloud-based physical therapy monitoring and 
guidance system,” Multimedia Tools and Applications (2017): 1-31.  

[15] W. Wei, C. McElroy, and S. Dey, “Human Action Understanding and 
Movement Error Identification for the Treatment of Patients with 
Parkinson’s Disease,” Proceedings of the IEEE International Conference 
on Healthcare Informatics (ICHI 2018), New York City, USA, June 2018. 

[16] Vicon. [Online]. Available: https://www.vicon.com/ 
[17] A. González, M. Hayashibe, V. Bonnet, and P. Fraisse, “Whole body center 

of mass estimation with portable sensors: Using the statically equivalent 
serial chain and a Kinect,” Sensors 14.9 (2014): 16955-16971. 

[18] A. González, P. Fraisse, and M. Hayashibe,“Adaptive interface for 
personalized center of mass self-identification in home rehabilitation,” IEEE 
Sensors Journal 15.5 (2015): 2814-2823. 

[19] Kinect. [Online]. Available: www.xbox.com/en-US/kinect 
[20] A. Huurnink, D. P. Fransz, I. Kingma, and J. H. van Dieën, “Comparison of 

a laboratory grade force platform with a Nintendo Wii Balance Board on 
measurement of postural control in single-leg stance balance tasks,” Journal 
of biomechanics 46.7 (2013): 1392-1395. 

[21] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a 
convolutional network and a graphical model for human pose 
estimation,” Advances in neural information processing systems (NIPS 
2014), Montreal, Canada, Dec. 2014. 

[22] Y. LeCun, and Y. Bengio, “Convolutional networks for images, speech, and 
time series,” The handbook of brain theory and neural networks 3361.10 
(1995): 1995. 

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with 
deep convolutional neural networks,” Advances in neural information 
processing systems (NIPS 2012), Lake Tahoe, USA, Dec. 2012. pp. 1097-
1105. 2012. 

[24] S. Ioffe, and C. Szegedy, “Batch normalization: Accelerating deep network 
training by reducing internal covariate shift,” arXiv preprint 
arXiv:1502.03167 (2015). 

[25] D. P. Kingma, and J. Ba, “Adam: A method for stochastic 
optimization,” arXiv preprint arXiv:1412.6980(2014). 


