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Abstract— In this paper, we present an AI-driven lifestyle 

intervention service for patients with hypertension. The 
automated intervention platform consists of a remote monitoring 
system that ingests lifestyle and blood pressure (BP) data and 
builds a personalized machine learning (ML) model to generate 
tailored lifestyle recommendations most relevant to each patient’s 
BP. Lifestyle data is collected from a wearable device and 
questionnaire mobile app which includes activity, sleep, stress and 
diet information. BP data is remotely collected using at-home BP 
monitors. With this data, the system trains random forest models 
that predict BP from lifestyle features and uses Shapley Value 
analysis to estimate the impact of features on BP. Precise lifestyle 
recommendations are generated based on the top lifestyle factors 
for each patient. To test the system’s ability to improve BP, we 
enrolled hypertensive patients into a three-armed clinical trial. 
During the 6-month trial period, our system provided weekly 
recommendations to patients in the experimental group. We 
evaluate the system’s effectiveness based on multiple BP 
improvement metrics and comparison with a control group. 
Patients in the experimental group experienced an average BP 
change of -4.0 and -4.7 mmHg for systolic and diastolic BP, 
respectively, compared to -0.3 and -0.9 mmHg for the control 
group. Our results demonstrate that the platform can effectively 
help patients improve their BP through precise lifestyle 
recommendations.  

Keywords— Blood pressure, hypertension, machine learning, 
personalized modeling, smart healthcare, remote patient monitoring, 
digital health, lifestyle medicine. 

I. INTRODUCTION 
High blood pressure (BP), or hypertension, is one of the most 

prevalent chronic diseases in the world [1]. Hypertension 
management begins with lifestyle modification which, alone, 
can be effective in controlling BP [2-5]. Traditionally, 
relationships between lifestyle factors (e.g., activity, sleep, diet, 
stress) and BP have been investigated through large-scale 
Randomized Controlled Trials (RCTs). However, the aggregate 
findings from RCTs are generalized insights and not tailored 
for individuals. That is, these insights do not capture how the 
impact of specific lifestyle factors on BP may differ between 
individuals due to variations in physiology and genomic 
makeup. In addition, data from RCTs are usually collected in 
healthcare settings or in a self-reported fashion. It is well-
established that BP measurements obtained in healthcare 
settings are often unreliable [6], while self-reported data often 
falls short of accuracy and granularity. 

In contrast, wearables such as Apple Watch, Fitbit and 
Samsung Galaxy Watch collect a great amount of lifestyle data 
in high granularity and continuity. With this data, personalized 

analytics can be carried out to elucidate relationships between 
BP and lifestyle factors at the individual level. In our previous 
work [7], we proposed a personalized, ML-based method to 
determine the top lifestyle factors impacting an individual’s BP. 
We utilized these top factors to provide personalized and 
precise insights to users, as opposed to general lifestyle 
recommendations. We conducted an experiment in which 
participants were randomized to either receive personalized 
lifestyle recommendations based on their data (experimental 
group) or not receive lifestyle recommendations (control 
group). We observed a significantly greater improvement in BP 
for the patients in the experimental group, demonstrating the 
potential of our recommendations to improve BP through 
precise lifestyle changes.  

While the initial results are promising, there are 3 main 
limitations to our previous work: 1.) No diet or stress data was 
collected. Since diet and stress can have a significant impact on 
BP [8], it is important to consider these factors when providing 
personalized recommendations. 2.) Patients in the experimental 
group were only provided a one-time recommendation. Since 
an individual’s physiology changes over time, the top lifestyle 
factors impacting their BP, and therefore the correct 
recommendation, may also change. In addition, more frequent 
outreaches can keep patients better engaged with their health 
and lifestyle choices. 3.) We did not collect compliance data, 
which meant we could not determine whether or not patients 
followed our recommendations. This is a necessary step to 
validate if our personalized recommendations have a beneficial 
impact on BP. 

In order to address these limitations, we propose an 
automated service, namely P3.AI, that uses remotely collected 
lifestyle and BP data to provide personalized, precise and 
proactive (P3) lifestyle interventions using artificial 
intelligence (AI) to patients with hypertension. In addition to 
BP and wearable device data, our remote monitoring system 
collects stress and diet information through a mobile 
questionnaire app. This data is provided as additional lifestyle 
features to improve the comprehensiveness of the personalized 
model. In order to provide ongoing recommendations and 
increase patient engagement with their health, the P3.AI service 
automatically sends a new lifestyle recommendation to patients 
every week based on their updated data. Every week, each 
patient’s personalized model is retrained with their new data 
using a 30-day rolling window and the top lifestyle features 
impacting their BP are updated. Based on their updated top 
lifestyle features, a new recommendation is sent.  



 

 

To evaluate the effectiveness of the P3.AI service, we 
conducted a clinical trial in which patients with hypertension 
were enrolled. The trial was designed in a fully remote manner 
so that patients could participate from anywhere in the USA. 
We collected lifestyle and BP data from each patient and 
provided weekly lifestyle recommendations based on their 
personalized model. We monitored whether patients were 
compliant with our recommendations based on their lifestyle 
data before and after each recommendation. We compare the 
BP improvement results for patients that received weekly 
recommendations (experimental group 2) to that of the patients 
from our previous work who received a one-time 
recommendation (experimental group 1) and no 
recommendations (control group).  

The rest of the paper is organized as follows. In Section II, 
we present the design of our remote monitoring system and 
describe our machine learning approach for generating 
personalized and precise lifestyle recommendations for 
improving BP. In Section III, we detail our clinical trial design 
including the cohort statistics, control and experimental groups, 
and outcome measures. In Section IV, we present the clinical 
trial results, including BP improvement and recommendation 
compliance. We draw comparisons between the control group 
and two experimental groups. Finally, we conclude the paper in 
Section V. 

II. SYSTEM DESIGN 
In this section, we first detail our remote monitoring system 

architecture and the data collected. We then present our ML 
approach for generating personalized and precise lifestyle 
recommendations for improving BP. 

A. System Architecture 
Figure 1 displays the overall architecture of the P3.AI 

remote monitoring system. The system consists of a Samsung 
Galaxy Watch, an Omron Evolv wireless BP monitor and a 
questionnaire mobile app. The mobile app was developed using 
the Touchwork platform [9] and is displayed in Figure 2. Data 
was collected remotely through the application programming 
interfaces (APIs) provided by Samsung, Omron and 
Touchwork. Patients were asked to wear the Samsung device as 
often as possible, including during sleep, and take two BP 
measurements per day, once in the morning (8-10 am) and 
evening (7-9 pm). The primary metrics used to measure BP are 
systolic and diastolic blood pressure (SBP and DBP), which are 
defined as the maximum and minimum BP, respectively, during 
a heartbeat and measured in millimeters of mercury (mmHg). 
In addition, patients completed a daily questionnaire that asked 
about their stress, mood and dietary choices in the past 24 
hours. These questions were developed in collaboration with 
physicians on our team and are detailed in Table I. The diet 

Figure 1. P3.AI remote monitoring and lifestyle intervention system architecture. 

Figure 2. Questionnaire mobile app. Note that black patches are used to not reveal the identities of institutional affiliations. 



 

 

questions are tailored for measuring information relevant to 
hypertension including alcohol, red meat, fruits/vegetables and 
salt consumption. The P3.AI system integrates the data into a 
combined dataset for training personalized lifestyle-BP models 
and generating precise lifestyle recommendations for patients. 
These recommendations are sent to patients via text message 
using the Twilio API service [10] as displayed in Figure 1. 
Patients’ BP and compliance data are collected after each 
recommendation for evaluation.  

B. Data Description and Feature Engineering 
The Samsung Galaxy Watch includes a heart rate monitor, 

accelerometer, ambient light sensor and barometer. The device 
uses these sensors to calculate various health parameters, 
including lifestyle and vitals measurements. Lifestyle features 
include activity (steps, walking/running speed, floors climbed), 
sleep timing (duration, bed time, up time) and sleep stages 
(deep, light, REM, awake). The device records heartrate (HR) 
and steps data every minute which we use to calculate different 
levels of active time (sedentary, lightly active, very active). To 
do this, we first calculate three HR zones for each patient based 
on their maximum HR. Maximum HR (𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) of each patient 
is calculated as [11]: 

220 − 𝑎𝑎𝑎𝑎𝑎𝑎                                   (1)  

Three HR zones (zone 1, 2, and 3) are defined as [12]: 

                       𝑍𝑍 ∗  𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚,𝑍𝑍 ∈  [. 5, .7, 1]                     (2) 

We define the three active levels as follows: sedentary (steps < 
10 or HR in zone 1), lightly active (steps ≥ 10 and HR is in zone 
2), and very active (steps ≥ 10 and HR in zone 3) [7]. We also 
calculate the mean and standard deviation of HR during sleep. 
These features are designed to capture information about sleep 
quality. Stress, mood and diet features are calculated based on 
the daily questionnaire responses. Stress and mood features are 
encoded from 1 to 5 based on the Likert scale [13] response to 
questions 1 and 2 in the daily questionnaire. For example, “no 
stress” is encoded as 1 while “extreme stress” is encoded as 5.  
The alcohol, red meat, fruits and vegetables features represent 
the number of servings consumed for that day. The salt feature 
is encoded from 1 to 4 based on the response to question 7. 
Table II presents all the lifestyle features along with which 
category each feature falls in. 

Galaxy Watch data is recorded every minute while BP is 
measured by patients twice per day. As a result, the combined 
dataset consists of time series with varying frequencies. 
Moreover, although the guideline for this study is to measure 
BP in the morning (8-10 am) and at night (7-9 pm), there are 
missing measurements, variations in measurement time (e.g., 
measurements in the afternoon) and redundant measurements 
(e.g., two evening measurements at 8 pm and 9 pm). To address 
these varying frequencies and create our labeled dataset for 
model training, each feature is aggregated on a 24-hour, 48-

Table I. Daily questions in our mobile app. Diet questions are tailored for measuring information relevant to hypertension. 

Question Answer Options 

Please answer the questions based on your past 24 hours of activities  

   1. How would you rate your stress? a. No Stress    b. Mild Stress   c. Moderate Stress   d. Much Stress   e. Extreme Stress 

   2. How would you rate your mood? a. Very Sad    b. Sad   c. Neutral   d. Happy   e. Very Happy 
   3. How many standard drinks of alcohol did you intake? a. 0    b. 1   c. 2   d. 3   e. 4   f. 5+ 

   4. How many servings of red meat did you intake? a. 0    b. 1   c. 2   d. 3+ 

   5. How many servings of fruits did you intake? a. 0-1    b. 2-3   c. 4-5   d. 6+ 

   6. How many servings of vegetables did you intake? a. 0-1    b. 2-3   c. 4-5   d. 6+ 

   7. How would you rate your salt intake? a. None (no added salt and no processed/fast food)) 
b. Low (low added salt and no processed/fast food) 
c. Medium (medium added salt or some processed/fast food) 
d. High (high added salt or processed/fast food) 

 
Table II. Lifestyle features used for personalized modeling.  

Feature Categories Features  

Activity 
(n=6) 

Steps, Floors, Walking/Running Speed, Sedentary 
Time, Lightly Active Time, Very Active Time 

Sleep 
(n=7) 

Sleep Duration, Bed Time, Wake Up Time, Light 
Sleep, Deep Sleep, REM Sleep, Sleep Awakeness  

Heart Rate 
(n=4) 

Max Active HR, Mean Active HR, Sleep HR, 
Sleep HR Fluctuation 

Stress & Diet 
(n=7) 

Stress, Mood, Alcohol, Red Meat, Fruits, 
Vegetables, Salt 

 Figure 3. Lifestyle features are aggregated 24, 48 and 72 hours before 
every BP measurement. 



 

 

hour and 72-hour basis before each BP reading as illustrated in 
Figure 3. Each feature is calculated as the average daily value 
in the 24/48/72 hours before each BP measurement. For 
example, the “steps_24”, “steps_48” and “steps_72” features 
are the average daily steps in the previous 24/48/72 hours 
before each BP reading. Similarly, the “sleep_24”, “sleep_48” 
and “sleep_72” features are the average sleep durations during 
the past 24/48/72 hours before each BP reading. The 
“stress_24”, “stress_48” and “stress_72” features represent the 
average stress score in the past 24/48/72 hours and the 
“red_meat_24”, “red_meat_48” and “red_meat_72” features 
represent the average daily red meat servings in the past 
24/48/72 hours. The rationale for engineering features in this 
fashion is that a patient’s lifestyle choices in the days prior to 
each BP measurement are most relevant to that BP 
measurement. We use this processed dataset to train our ML 
model and investigate which features have the most significant 
impact on BP prediction. 

C. Personalized Modeling and Lifestyle Recommendations 
Figure 4 presents an overview of our ML-based method for 

generating personalized and precise lifestyle recommendations. 
Random Forest (RF) is used as the ML model in our proposed 
method. In our previous work [7], we compared multiple ML 
models in terms of BP prediction error and demonstrate that RF 
achieves a low error for predicting BP based on lifestyle 
features. In this paper, we do not present the predictive 

performance of the RF model since we focus on the 
effectiveness of the intervention instead of numerical prediction 
of BP. RF is an ensemble model that aggregates a collection of 
decision trees in order to reduce overfitting and the resulting 
high variance in prediction [14]. RF is more robust to noisy 
features as compared to other models [15], meaning redundant 
or irrelevant features will not greatly impact performance. In 
addition, the RF model provides a high level of interpretability 
compared to other models, which is necessary for determining 
which lifestyle features have the greatest impact on the model’s 
BP prediction. A separate model is trained for each patient 
using their personal lifestyle-BP dataset. 

We utilize Shapley Value analysis to determine which 
lifestyle features have the greatest impact on BP prediction.  
Shapley Value analysis is a model-agnostic interpretation 
method derived from game theory. Given a set of feature values 
and a trained ML model, the estimated Shapley value indicates 
how each feature contributes to the model’s prediction. We use 
the tree SHAP (SHapley Additive exPlanations) framework 
[16, 17], which is optimized for tree-based models, to interpret 
the predictions of the RF model. The SHAP values attribute to 
each feature the change in the expected model prediction when 
conditioning on that feature [18]. The recommendation we 
provide to patients is based on their personal model’s top 
Shapley Value feature. Shapley Value analysis also determines 
the directionality of each feature’s impact on BP prediction. 
Figure 5 displays the Shapley Value feature ranking and the 

Figure 4. Block diagram of proposed method for generating personalized and precise lifestyle recommendations. 

Figure 5. Lifestyle feature ranking and corresponding personalized and precise recommendation for two patients. Green/Red colored bars 
indicate that an increase in a feature’s value results in a lower/higher BP prediction. 



 

 

corresponding lifestyle recommendation for two different 
patients. In Figure 5, a red colored bar indicates that an increase 
in the feature’s value results in a higher BP prediction. A green 
colored bar indicates that an increase in the feature’s value 
results in a lower BP prediction. The top feature for patient 1 is 
“speed_72” and increasing this feature value results in a lower 
BP prediction, as indicated by the green bar. As a result, our 
recommendation to the patient is to increase speed and intensity 
during activities. For patient 2, the top feature is “sleep_48” and 
increasing this feature value results in a lower BP prediction. 
The recommendation for this patient is to increase their sleep 
duration.  

All lifestyle features map to a different recommendation 
based on the feature’s impact on BP prediction. Most lifestyle 
features are actionable, including activity, sleep timing, diet and 
stress related features. Certain sleep related features, including 
sleep stage (deep, light, REM) and sleep heartrate features are 
not directly actionable. For these features, our recommendation 
to patients was to focus on improving sleep hygiene. In 
addition, for some patients we observed counterintuitive 
relationships between activity related features and BP 
prediction. For example, the third top feature for patient 2 is 
“lightly_active_48” which has a red colored bar. This means 
that more light activity resulted in a higher BP prediction. For 
cases when more activity was associated with a higher BP, we 
recommended that the patient increase time spent doing restful 
activities. Note that the 24/48/72 features map to the same 
recommendation. For example, if either “steps_24” or 
“steps_48” is the top feature, the recommendation will be the 
same. This is because the multiple feature time frames are used 
for modeling purposes and not directly actionable for patients. 
For each recommendation, we monitor patient compliance 
based on their lifestyle data the week before and after the 
recommendation. In Sec. IV (B) we discuss patient compliance 
with our recommendations.  

The significant difference in feature rankings in Figure 5 
demonstrates that lifestyle factors have a varying impact on BP 
for different patients, motivating our use of personalized and 
precise lifestyle recommendations. The P3.AI service 
automatically retrains each patient’s personalized model using 
a 30-day rolling window and updates their top features and 
lifestyle recommendation on a weekly basis. In order to test the 
effectiveness of these recommendations, we recruited patients 
with hypertension for our clinical trial. 

III. CLINICAL TRIAL 
In this section, we first describe our recruitment strategy and 

trial cohort. We then present the trial design including the 
experimental/control groups and outcome measures.  

A. Recruitment and Cohort Statistics 
Our clinical study was reviewed and approved by our 

university’s Human Research Protections Program, which 
operates Institutional Review Boards (IRBs). The study was in 
collaboration with our university’s healthcare system, with 
patient enrollment, onboarding and management conducted by 
the healthcare system’s clinical and translational research 
institute. The inclusion criteria required patients to be pre-

hypertensive or have Stage I hypertension (SBP between 120-
140/ DBP under 90 per ACC/AHA 2017 guidelines [19]) and 
not be taking any antihypertensive medications. The trial was 
designed in a fully remote manner so that patients could 
participate from anywhere in the USA. After patients were pre-
screened through an online eligibility questionnaire, our 
research coordinator confirmed their BP and medication status 
with their healthcare systems. Eligible patients who consented 
were provided a Samsung Galaxy Watch and an Omron Evolv 
wireless BP monitor to collect their lifestyle and BP data for up 
to 6 months. In total, the study cohort consisted of 38 patients 
and Table III describes the cohort statistics. The average age of 
participants was 51 years and 61% were male. The average 
initial BP for patients was 127/81. The initial BP for each patient 
is calculated as the average of their first week of measurements. 
25 of the 38 patients in our cohort are from our previous work 
[7]. Since then, we recruited an additional 13 patients to 
participate in our trial.  

B. Trial Design 
The objective of this trail is to assess the ability of the P3.AI 

service to improve patients BP through personalized and precise 
lifestyle interventions. We aim to compare the BP improvement 
results for patients that received weekly recommendations to 
that of the patients from our previous work who received a one-
time recommendation and no recommendations. In order to 
make this comparison, we divided the patients into a control 
group and two experimental groups, as summarized in Table IV. 
Experimental group 2 included the 13 new patients recruited 
since our previous work. These patients received weekly 
lifestyle recommendations based on their updated data and 
personal model. Our recommendations were sent via text 
message as shown in Figure 5. Each message included a 
summary of the patient’s BP progression for the current week in 
addition to the lifestyle recommendation. Experimental group 1 
consists of 6 patients who received a one-time recommendation. 
The control group consists of 19 patients who did not receive 

Table III. Cohort Statistics (n = 38) 

Age (years, mean ± SD) 50.9 ± 13.1 

# Men 23 

# Women 15 

Initial SBP (mmHg, mean ± SD) 127.1 ± 8.2 

Initial DBP (mmHg, mean ± SD) 80.9 ± 6.9 

 

Table IV. Comparison of control vs. experimental groups. 
 

Control 
(n=19) 

Experimental 1 
(n=6) 

Experimental 2 
(n=13) 

Provided devices and 
mobile app for data 

collection 
X X X 

Personalized lifestyle 
recommendation 

(one-time) 
 X  

Personalized lifestyle 
recommendations 

(weekly) 
  X 

 



 

 

any recommendations, but were provided with a BP cuff and 
Samsung watch for data collection. The control group received 
devices to ensure that the only difference between the control 
and experimental groups was our personalized lifestyle 
recommendations. Consistently measuring your BP and wearing 
the Samsung watch is in itself an intervention since it makes the 
patient more aware of their health and lifestyle choices. As a 
result, patients may implement beneficial lifestyle choices on 
their own. All patients received devices to control for this 
confounding factor and ensure a fair and accurate comparison 
between the control and experimental groups. 

The primary outcome measure for this trial is the average 
change in SBP and DBP in the experimental vs. control groups. 
Average SBP and DBP during the first and last week of a 
patient's enrollment is used to calculate the SBP and DBP 
change for each patient. A secondary outcome measure is patient 
compliance with the personalized recommendations within 
experimental group 2. This is an important measure to validate 
if our personalized recommendations have a beneficial impact 
on BP. Data from the Samsung watch (steps, sleep duration, 
active minutes, etc.) and mobile app questionnaire (stress, mood, 
alcohol, etc.) is used to assess whether patients followed the 
lifestyle recommendations. We also sent patients a weekly 
questionnaire asking them to rate the difficulty of following their 
current recommendation on a Likert scale [13] of 1 (easy) to 5 
(difficult). For certain recommendations, such as improving 
sleep hygiene and increasing time spent doing restful activities, 
measuring compliance solely based on device data is infeasible. 
For these recommendations, we used patient responses to the 
recommendation difficulty questionnaire to assess compliance. 

IV. RESULTS AND DISCUSSION 
Next, we present the clinical trial results, including BP 

improvement and recommendation compliance. We draw 
comparisons between the control group and two experimental 
groups. Finally, we provide a discussion on future work. 

A. Blood Pressure Improvement 
Table V compares the BP improvement results for each trial 

group. These results include the change in mean BP, the 
percentage of patients with decreasing mean BP, the change in 
maximum BP, and the percentage of patients with decreasing 

maximum BP. The mean and maximum BP during the first and 
last week of the trial is calculated for each patient in order to 
determine these results. A mean change of -0.3 and -0.9 mmHg 
for SBP and DBP, respectively was measured in the control 
group, -3.8 and -2.3 mmHg in experimental group 1, and -4.0 
and -4.7 mmHg in experimental group 2. Evidently, patients in 
experimental group 2 achieved the greatest improvement in 
mean BP during the trial period. Experimental group 2 
experienced a 3.7 and 3.8 mmHg greater reduction in SBP and 
DBP, respectively, compared to the control group and a 0.2 and 
2.4 mmHg greater reduction in SBP and DBP, respectively, 
compared to experimental group 1. While the difference in mean 
SBP change between the two experimental groups is small, the 
mean DBP change in experimental group 2 is significantly 
greater than experimental group 1. In addition to mean BP 
change, we compare the change in maximum BP since 
maximum BP has been shown to be a strong predictor of 
cardiovascular events, independently of mean BP [20]. The 
average changes in maximum SBP and DBP were -3.3 and -2.5 
mmHg for the control group, -10.5 and -8.8 mmHg for 
experimental group 1, and -9.9 and -8.3 mmHg for experimental 
group 2. Experimental group 1 experienced a 0.6 and 0.5 mmHg 
greater reduction in maximum SBP and DBP, respectively, 
compared to experimental group 2. However, both experimental 
groups achieved a significantly greater reduction in maximum 
BP compared to the control group.  

We also compare the percentage of patients with normal BP 
(SBP < 120 and DBP < 80 per ACC/AHA 2017 guidelines [19]) 
at the beginning and end of the trial in Table V. In experimental 
group 2, 15% and 46% of patients initially had their SBP and 
DBP, respectively, at normal levels. At the end of the study, 46% 
and 69% achieved normal levels for SBP and DBP, respectively. 
Evidently, there was a 31% increase in patients with normal SBP 
and a 23% increase in patients with normal DBP in experimental 
group 2. In experimental group 1, there was a 0% increase in 
patients with normal SBP and a 50% increase in patients with 
normal DBP. In the control group, there was a 10% increase in 
patients with normal SBP and a 0% increase in patients with 
normal DBP. Evidently, experimental group 2 experienced the 
greatest percentage increase in patients that reached normal BP 
levels during the trial. Only experimental group 1 experienced a 
greater percentage increase in patients with normal DBP. Since 

Table V.  Comparison of BP change in the experimental and control groups. 

 Control Group 
(n = 19) 

Experimental Group 1 
(n = 6) 

Experimental Group 2 
(n = 13) 

Age 52.9 ± 13.1 50.1 ± 15.0 48.4 ± 12.2 

Female ratio (%) 37% 33% 46% 

 SBP DBP SBP DBP SBP DBP 

Initial BP (mmHg) 127.2 ± 7.3 80.0 ± 5.9 125.4 ± 5.9 80.8 ± 6.7 127.5 ± 10.1 82.5 ± 7.8 

Mean BP change (mmHg) -0.3 -0.9 -3.8 -2.3 -4.0 -4.7 

Subjects with decreasing mean BP (%) 9 (47%) 10 (53%) 5 (83%) 6 (100%) 9 (69%) 10 (77%) 

Max BP change (mmHg) -3.3 -2.5 -10.5 -8.8 -9.9 -8.3 

Subjects with decreasing max BP (%) 12 (63%) 11 (58%) 6 (100%) 6 (100%) 11 (85%) 11 (85%) 

Subjects with initial BP < 120/80 mmHg (%) 3 (16%) 14 (74%) 2 (33%) 2 (33%) 2 (15%) 6 (46%) 

Subjects with final BP < 120/80 mmHg (%) 5 (26%) 14 (74%) 2 (33%) 5 (83%) 6 (46%) 9 (69%) 

 



 

 

the number of patients in experimental group 1 is low, a small 
number of patients improving to normal BP levels will result in 
a large percentage increase. Overall, there is not one group that 
achieved the best results across all BP improvement metrics, 
Experimental group 2 achieved the greatest improvement in 
mean BP and percentage of patients achieving normal BP levels. 
We attribute this to the ongoing engagement with these patients 
through our weekly personalized lifestyle recommendations.  

To investigate the BP progression for patients in 
experimental group 2, we calculate the percentage of patients at-
goal (BP less than 120/80 mmHg) and non-hypertensive (BP 
less than 130/80 mmHg) on a bi-weekly basis. As displayed in 
Figure 6, this analysis is carried out on the first 4 months of 
patient data since there are 3 patients who did not provide data 
for the last 2 months of the study. The red lines in Figure 6 
represent a 6-week moving average (MA) and the first 2 days of 
patients’ BP data are used to calculate the week 0 percentage. At 
the start of the trial, 15% and 46% of patients were at-goal and 
non-hypertensive, respectively. By the end of 4 months, these 
percentages increased to 50% and 75%, corresponding to a 35% 
and 29% increase in patients at-goal and non-hypertensive, 
respectively. While there are variations week to week in these 
percentages, the overall trend is positive as indicated by the 
moving average. These results demonstrate that the P3.AI 
service can help patients progress to healthier BP ranges through 
ongoing interactions with the patients.  

To investigate the BP trend for patients in experimental 
group 2, we calculate the 30-day moving average for SBP and 
DBP. We first calculate the 30-day MA for each individual 
patient then average these to get the combined result. In Figure 
7, we display the SBP and DBP 30-day MA for all patients (left), 
patients with decreasing mean BP (middle) and patients with 
increasing mean BP (right). Based on the 30-day MA for all 
patients, SBP and DBP steadily decreased during the first 1.5 
months (6 weeks) of the study. After 6 weeks, the SBP and DBP 
stopped decreasing and oscillated at around 124 and 79 mmHg, 
respectively. Furthermore, we separate the patients based on 
whether they experienced a decrease or increase in mean BP 
during the trial. For patients who experienced a decrease in mean 
BP, a similar trend to that of all patients can be seen. The average 
initial BP for these patients was 131/86 mmHg. On the other 
hand, for patients who experienced an increase in mean BP, the 
30-day MA for SBP and DBP increased during the first 2 months 
of the study and then leveled off. Interestingly, the SBP and DBP 
for these patients stopped increasing and remained stable at 
around 124 and 78 mmHg after 2 months. The average initial 
BP was 120/76 mmHg for patients who experienced an increase 
in mean BP. Since an initial BP of 120/76 mmHg is already at 
normal levels, lifestyle intervention may not further reduce their 
BP. On the other hand, an initial BP of 131/86 mmHg is 
classified as Stage 1 hypertension [19]. These results indicate 
that patients who were initially hypertensive experienced an 

Figure 6. Progression of patients in experimental group 2 at-goal (<120/80 mmHg) and non-hypertensive (<130/80 mmHg). 
The red line represents a 6-week moving average (MA). 

Figure 7. SBP and DBP progression for patients in experimental group 2. These plots display the 30-day moving averages (MA) for 
all patients (left), patients with decreasing mean BP (middle) and patients with increasing mean BP (right). 



 

 

improvement in BP using the P3.AI service. Furthermore, the 
BP of these patients reached a healthy range in about 6 weeks 
and remained stable afterwards. 

B. Recommendation Compliance  
 A secondary outcome measure for patients in experimental 
group 2 is their compliance with the personalized 
recommendations. Data from the Samsung watch (steps, sleep 
duration, active minutes, etc.) and mobile app questionnaire 
(stress, mood, alcohol, etc.) is used to assess whether patients 
followed the lifestyle recommendations. For each 
recommendation, we investigated the corresponding lifestyle 
feature the week before and after each recommendation. For 
example, if the recommendation was to increase daily steps, we 
calculated the average daily steps during the week before and 
after the recommendation. If step count was higher during the 
week after the recommendation, we marked the patient as 
compliant. For most recommendations it is possible to directly 
monitor compliance based on device data. However, for some 
recommendations it is not possible to monitor compliance based 
on a single lifestyle factor. These recommendations include 
improving sleep hygiene and increasing time spent doing restful 
activities. For example, many factors affect sleep hygiene 
(bedroom temperature, food/alcohol consumption before bed, 
daytime naps, etc.) therefore it is not possible to accurately 
measure based on one device feature. To assess compliance for 
these recommendations, we used patient responses to the 
recommendation difficulty questionnaire that was sent each 
week, as described in Sec. III (B). This questionnaire asked 
patients to rate the difficulty of complying with the current 
recommendation on a scale of 1 (easy) to 5 (difficult). If a patient 
responded with a 1 or 2, we counted the patient as compliant 
with the recommendation. The rationale is that patients are more 
likely to comply with recommendations that they find easier to 
follow. 

A total of 204 lifestyle recommendations were sent to the 
patients in experimental group 2 during the trial duration. Of the 
204 recommendations, 192 had sufficient data to assess 
compliance. In total, patients complied with 60% of these 
recommendations. Overall, this result indicates that the majority 
of our lifestyle recommendations were complied with. Sustained 
patient compliance and behavior change is a major challenge in 
healthcare. Precise lifestyle recommendations can improve 
patient compliance by focusing on a specific aspect of their 
lifestyle [21]. In order to investigate differences in compliance 
for different recommendations, we grouped recommendations 
into 5 categories: 1. Sleep, 2. Activity, 3. Restfulness, 4. Heart 
Rate and 5. Stress & Diet. Stress and diet related 
recommendations are grouped into one category since this data 
is collected from the mobile app questionnaire. Table VI 
displays the number of recommendations sent and the 
compliance for each category. Evidently, the category with the 
greatest number of recommendations is sleep. Out of 69 total 
sleep related recommendations, 58% were complied with. The 
category with lowest compliance was activity, where 42% of 
recommendations were complied with. This may be due to the 
fact that increasing activity requires the greatest amount of effort 
compared to the other recommendations. The stress and diet 
category had the highest compliance of 90%.  

C. Future Work 
Our future work will involve enhancing the P3.AI system to 

be device agnostic. This will expand accessibility to the service 
by enabling patients with different wearable devices to receive 
personalized lifestyle recommendations most relevant to their 
BP. Since not all devices will collect the same lifestyle 
information, different feature engineering strategies will be 
required for different devices. A limitation of this trial is the 
relatively small number of subjects who received our 
personalized lifestyle recommendations. In addition, patients in 
this trial were pre-hypertensive or had Stage I hypertension 
(SBP between 120-140 and DBP under 90). In order to obtain a 
more robust result, we plan to conduct a larger trial and enroll 
patients with Stage II hypertension (SBP greater than 140 or 
DBP greater than 90). While the majority of our 
recommendations in this trial were complied with, we plan to 
implement additional measures to further improve compliance. 
One possibility is to gamify our recommendations, where 
patients earn rewards for following our recommendations.  

V. CONCLUSION 
In this paper, we propose an automated service, namely 

P3.AI, that uses remotely collected lifestyle and BP data to 
provide personalized, precise and proactive lifestyle 
interventions using AI to hypertensive patients. The P3.AI 
system trains a personalized random forest model to predict BP 
based on lifestyle factors for each patient. Shapley Value 
analysis is used to identify the most important lifestyle attributes 
impacting a patient’s BP. Based on the top lifestyle factors, the 
system provides precise recommendations to improve the 
patient’s BP. We investigated the effect of the P3.AI service by 
enrolling 38 patients into a clinical trial. Patients were divided 
into a control group and two experimental groups to compare the 
BP improvement results for patients that received personalized 
recommendations to those who did not. The trial results show 
that significant improvement in BP can be achieved with 
personalized lifestyle recommendations. After receiving 
recommendations, patients in experimental group 2 decreased 
their BP by 4.0 and 4.7 mmHg for systolic and diastolic BP, 
respectively, compared to a decrease of 0.3 and 0.9 mmHg for 
patients in the control group who did not receive 
recommendations. 
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