
Abstract – Current remote monitoring of COVID-19 patients 
relies on manual symptom reporting, which is highly dependent on 
patient compliance. In this research, we present a machine learning 
(ML)-based remote monitoring method to estimate patient 
recovery from COVID-19 symptoms using automatically collected 
wearable device data, instead of relying on manually collected 
symptom data. We deploy our remote monitoring system, namely 
eCOVID, in two COVID-19 telemedicine clinics. Our system 
utilizes a Garmin wearable and symptom tracker mobile app for 
data collection. The data consists of vitals, lifestyle, and symptom 
information which is fused into an online report for clinicians to 
review. Symptom data collected via our mobile app is used to label 
the recovery status of each patient on a daily basis. We propose a 
ML-based binary patient recovery classifier which uses wearable 
data to estimate whether or not a patient has recovered from 
COVID-19 symptoms. We evaluate our method using leave-one-
subject-out (LOSO) cross-validation, and find that Random Forest 
(RF) is the top performing model. Our method achieves an F1-score 
of 0.88 when applying our RF-based model personalization 
technique using weighted bootstrap aggregation. Our results 
demonstrate that ML-assisted remote monitoring using 
automatically collected wearable data can supplement or be used in 
place of manual daily symptom tracking which relies on patient 
compliance.  

Index Terms – Machine Learning, Wearables, Remote Patient 
Monitoring, COVID-19 

I. INTRODUCTION  
     Around the world, healthcare systems have been overwhelmed 
by the high numbers of COVID-19 cases, which has surpassed 437 
million as of March 2, 2022 according to the World Health 
Organization (WHO) [1]. In the US, there were approximately 4.5 
million COVID-19 hospitalizations between August 1, 2020 and 
February 28, 2022, according to the Center for Disease Control 
and Prevention (CDC) [2]. While this is a daunting number of 
hospitalizations, there have been approximately 80 million cases 
in the US [3], meaning the large majority of cases involve 
ambulatory patients being treated from home. This is an 

unprecedented number of patients needing care in their home and 
many are not being monitored in any way by medical personnel.  
     In order to combat this pandemic and provide more optimal 
care at scale, hospitals are changing the way in which healthcare 
is delivered. At the center of this changing landscape is a shift 
towards remote, continuous, and automated delivery of healthcare. 
This shift can lead to significant improvement in and scalability of 
at-home patient care for COVID-19, while at the same time 
enabling significant savings in human and equipment resources. 
Current remote monitoring for COVID-19 patients relies on 
manual symptom reporting, which is highly dependent on patient 
compliance. In this study, we demonstrate that data automatically 
collected from wearable devices together with machine learning 
(ML)-assisted diagnosis can enhance the efficiency and increase 
the scalability of remote monitoring for COVID-19 patients. 
     Wearable devices are one of the enabling technologies making 
this shift in healthcare delivery possible [4-7]. Consumer 
wearables, such as Apple Watch, Fitbit, and Samsung Galaxy 
Watch, remotely collect a great amount of lifestyle and vitals data 
in high granularity and continuity. There is great opportunity for 
ML to assist in remote monitoring due to the large amount of data 
that is collected. Since it is not possible for doctors to manually 
review all remotely collected data [8], ML has the potential to 
provide automated insights into the health status of patients and 
significantly increase the scalability of remote patient care. This is 
especially helpful during a pandemic, where in-person interaction 
and monitoring may pose risks to healthcare workers and other 
patients. In addition, ML-assisted monitoring can provide patients 
with insights regarding their own progression, helping to keep 
them engaged and informed about their health. 
     Current research on using wearables and machine learning to 
combat COVID-19 is primarily focused on early detection of 
infection. The authors in [12-16] have demonstrated that it is 
possible to detect deviations in health data before significant 
symptoms arise. Using Fitbit devices, the researchers in [12] found 
that 26 out of 32 (81%) infected patients in their cohort had 
alterations in their heart rate, number of daily steps, or time asleep 
before becoming symptomatic. The authors in [15] used 
respiration rate, heart rate, and heart rate variability data collected 
from their wearable devices and proposed a deep learning method 
to estimate infection before the onset of symptoms. Early 
detection will enable individuals to quarantine earlier, helping 
reduce the spread of the virus. These studies demonstrate that 
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wearable device data can provide actionable insights into the 
conditions of patients.  
     In this research, we propose a novel approach to estimate 
patient recovery from COVID-19 symptoms using automatically 
collected device data and machine learning. We partnered with the 
UCSD Health and Neighborhood Healthcare COVID-19 
telemedicine clinics in order to carry out this research. Our remote 
monitoring system utilizes a Garmin wearable and symptom 
tracker mobile app for data collection and fuses this data into an 
online report for clinicians to review. We propose a novel labelling 
logic for patient recovery from COVID-19 symptoms using the 
symptom tracker data. The labelling logic was developed in 
collaboration with UCSD Health doctors and the details are 
defined in Sec. III (B). Using this data, we train a patient recovery 
classifier which uses wearable data to estimate whether or not a 
patient has recovered from COVID-19 symptoms. We evaluate 
our method according to leave-one-subject-out (LOSO) CV to 
replicate the clinically relevant use case scenario in which a newly 
infected patient will not have data for model training. We compare 
the performance of different ML models and find that Random 
Forest (RF) is the top performing model. We propose a RF-based 
personalization technique in order to improve model performance. 
This technique utilizes the RF’s weighted bootstrap aggregation 
algorithm in order to tune the model to each patient. The details 
are presented in Sec. III (D). Finally, we conduct Shapley Value 
analysis to inspect which device features have the greatest impact 
on classification. This analysis provides an interpretation of what 
the model has learned, which is especially important for medical 
applications. Our contributions are as follows: 
• We deploy a remote patient monitoring system in two 

COVID-19 telemedicine clinics. The system consists of a 
wearable device, symptom tracker mobile app, and online 
dashboard which collects and analyzes vitals, lifestyle, and 
symptoms data. The estimated recovery status of each 
patient using our ML approach is displayed on the dashboard 
for clinicians to review. 

• We propose a patient recovery classifier which uses 
wearable data to estimate whether or not a patient has 
recovered from COVID-19 symptoms. This ML tool can 
provide doctors with automated insights into the recovery 
status of their infected patients and bypass the need for 
manual daily symptom tracking.   

• We carry out LOSO CV to mirror the clinically relevant use-
case scenario and propose a RF-based personalization 
technique that improves model performance by tuning the 
model to each patient via weighted bootstrap aggregation. 

     The rest of the paper is organized as follows. In Section II, we 
investigate related works that utilize machine learning for 
COVID-19 diagnosis. In Section III, our remote monitoring 
system and data acquisition are presented. We then detail the 
proposed labelling logic and RF-based personalization technique 
for patient recovery classification. In Section IV, the performance 
of our proposed ML method is evaluated. In addition, we carry out 
top feature analysis based on Shapley Values and provide a 
discussion on research challenges. Finally, we conclude the paper 
in Section V. 

II. RELATED WORK 
     In this section, we present related research which is grouped 
into the follow categories: COVID-19 symptom tracking, early 
diagnosis of COVID-19, and recovery detection from COVID-
19. Table I summarizes the comparison of related works. 

A. COVID-19 Symptom Tracking 
 The researchers in [9] utilize a smartphone-based app to 

collect symptom data from patients. In the app, patients also 
recorded when they had tested either negative or positive for 
COVID-19 infection. They propose a logistic regression model 
that combines the reported symptoms in order to predict 
COVID-19 infection. A combination of loss of smell and taste, 
fatigue, persistent cough and loss of appetite resulted in the best 
model, which achieved a sensitivity and specificity of 0.65 and 
0.78, respectively. The authors in [10] also used a mobile app for 

Table I. Comparison of related works. 

Reference Objective Device Features (# features) Method ML Model Interpretation 

[9] COVID-19 symptom tracking No Logistic Regression No 

[10] COVID-19 symptom tracking No Logistic Regression Yes 

[11] COVID-19 symptom tracking No Gradient-Boosting Machine Yes 

[12] Early diagnosis of COVID-19 Yes (2) Gaussian Anomaly Detection No 

[13] Early diagnosis of COVID-19 Yes (1) Deterministic State Machine No 

[14] Early diagnosis of COVID-19 Yes (3) Logistic Regression No 

[15] Early diagnosis of COVID-19 Yes (4) Convolutional Neural Network No 

[16] Early diagnosis of COVID-19 Yes (16) Gradient-Boosting Machine Yes 

[17] Recovery detection from COVID-19 No Support Vector Machine No 

[18] Recovery detection from COVID-19 No Decision Tree No 

Ours Recovery detection from COVID-19 Yes (28) Random Forest Yes 

 



collecting symptoms data and COVID-19 test results. They 
trained a logistic regression model to predict COVID-19 
infection based on self-reported symptoms, and calculated the 
odds ratio for each symptom in order to understand which 
symptoms were the strongest predictors. Chills, fever, loss of 
smell, nausea, and shortness of breath were the top five strongest 
predictors of COVID-19 infection. Participants in their cohort 
with a positive test result experienced 5.6 symptoms on average. 
In [11], the researchers trained a gradient-boosting machine to 
predict COVID-19 infection based on 8 features: cough, fever, 
sore throat, shortness of breath, headache, age, sex, and known 
contact with an individual confirmed to have COVID-19.  Their 
approach achieved a sensitivity and specificity of 0.86 and 0.79, 
respectively. Fever and cough were the top 2 features with the 
greatest impact on the model’s prediction. These past works 
demonstrate that self-reported symptoms can be effectively used 
to predict COVID-19 infection. However, these approaches rely 
on patient compliance with manual symptom tracking. In 
contrast, wearable devices can passively collect data that is 
relevant to COVID-19 infection. In addition, wearable device 
data can be predictive of COVID-19 infection prior to symptom 
onset. 

B. Early Diagnosis of COVID-19 
The authors in [12] use data collected from wearable devices 

for the early detection of COVID-19 infection. They propose an 
anomaly detection technique based on two parameters: 1. 
Resting heart rate (RHR), 2. Heart rate over steps (HROS). 
HROS was calculated by dividing heart rate by steps data at each 
hourly interval. They report that significant deviations in these 
parameters relative to the individual baseline can indicate 
COVID-19 infection. They utilize Gaussian density estimation 
to classify anomalies in the dataset. Their results show that 63% 
of COVID-19 cases in their cohort could have been detected 
before symptom onset. The researchers in [13] also utilize 
deviations from RHR to classify a patient as infected. They 
propose a deterministic finite state machine which triggers an 
alert when a patient’s overnight RHR increases above the 
median of previous overnight RHRs by an empirically 
determined threshold. Their system generated alerts for 80% of 

the infected individuals prior to symptoms, however, many of 
the alert-generating events were not associated with COVID-19 
and instead attributed to other events, such as poor sleep, stress, 
alcohol consumption, intense exercise or travel. While these 
studies demonstrate that deviations in physiological and activity 
data measured by wearable devices can be used for early 
detection of COVID-19, they only utilize a subset of possible 
device features (RHR and steps) and do not investigate ML-
based approaches which are well suited to handle larger feature 
sets. Furthermore, they do not investigate whether wearable 
device data can be used to monitor patient recovery from 
COVID-19.     

The researchers in [14] trained a logistic regression model to 
differentiate COVID-19 positive vs. negative cases in 
symptomatic individuals based on symptoms and wearable 
device data. Baseline device data was calculated as the median 
of the data from 21 to 7 days before the onset of symptoms. They 
show an increase in model performance when including device 
data (RHR, sleep duration and step count) in addition to 
symptoms data as part of the feature set. The authors in [15] 
trained a convolutional neural network to predict illness given 
health metrics for that day and the preceding 4 days. These 
metrics included the mean respiration rate (RR) during sleep, 
mean heart rate during sleep, the root mean square of successive 
differences (RMSSD) of the nocturnal RR series and the 
Shannon entropy of the nocturnal RR series. They organize each 
data sample into 5x4 matrix and resize each matrix into a 28x28 
image as the input to the network. Their method achieved a 
sensitivity and specificity of 51% and 90%, respectively. In [16], 
the researchers presented a gradient-boosting model based on 
decision trees to detect COVID-19 infection. Their approach 
achieved a sensitivity and specificity of 71% and 67%, 
respectively, when only using device features as input to the 
model. They grouped the device features into activity, sleep and 
heart rate categories, and found that activity related features had 
the greatest impact on the model’s prediction, followed by sleep 
and heart rate-related features. These works demonstrate the 
ability of ML models to learn meaningful relationships between 
wearable device features and the onset of COVID-19 infection. 

Figure 1. eCOVID remote monitoring and reporting system architecture. 



C. Recovery Detection from COVID-19 
     The research presented in [9-16] focused on predicting 
COVID-19 infection using self-reported symptoms or wearable 
device data. In contrast to these works, the objective of our 
research is to estimate recovery from COVID-19 symptoms 
using wearable device data. The researchers in [17, 18] present 
different approaches to estimate recovery from COVID-19 

infection based on symptoms and demographic data. The authors 
train a support vector machine [17] and decision tree classifier 
[18] to estimate patient recovery based on symptoms, 
demographic, and travel-related features. In [17], the authors 
found that most of the patients who could not recover 
experienced a fever, cough and fatigue. In [18], the authors 
extended their model to predict the number of days needed to 

Figure 2. eCOVID symptom tracker app for UCSD Health and Neighborhood Healthcare. 

Table III. Daily Questions in Symptom Tracker App. 

Question Answer Options 

1. Compared to yesterday, today are you feeling: a. Better    b. Worse   c. Same 

2. Have you had any of the following symptoms 
(mark all that apply): 

Headache, Chills, Night sweats, Sore throat, Nasal/sinus congestion, Anosmia (loss of smell), Ageusia (loss 
of taste), Chest pain, Subjective fevers 

3. How would you rate your fatigue? a. 0 (no fatigue)    
b. 1 (mild fatigue – able to do normal activities)    
c. 2 (prefer to lay and sit around, but still doing some activities)    
d. 3 (mostly laying/sitting around, but still independently able to prepare meals and take medications)    
e. 4 (mostly laying around - need help with preparing meals, but able to dress yourself, take medications and 
use bathroom independently)    
f. 5 (staying in bed or chair all day, need assistance to make meals, ambulate, take medications, get dressed, 
and/or use bathroom) 

4. How would you rate your cough? a. 0 (no cough)    
b. 1 (minimal - clearing throat, less than 10 times a day)    
c. 2 (coughing intermittently throughout the day - over 10 times/day) 
d. 3 (Coughing frequently throughout the day, but not preventing sleep or interfering with activities)    
e. 4 (Coughing so frequently that it makes it difficult to sleep, and/or is affecting usual activities)    
f. 5 (Coughing so severe that it is causing shortness of breath, vomiting, inability to sleep) 

5. How would you rate any shortness of breath? a. 0 (no shortness of breath)    
b. 1 (minimal shortness of breath - only during coughing episodes)    
c. 2 (shortness of breath with significant exertion - after climbing flight of stairs, walking long distances)    
d. 3 (shortness of breath with usual daily activities - getting dressed, showering, preparing meals)    
e. 4 (shortness of breath with minimal activity - moving from bed to chair, going to bathroom)    
f. 5 (shortness of breath at rest - just while sitting or lying) 

6. Are you able to drink and eat? a. Yes - normal appetite 
b. Somewhat - decreased appetite (50-75% of what I normally eat/drink)   
c. Little (less than 25-50% of what I normally eat/drink) 
d. Minimal (<25% of what I normally eat/drink) 

7. What fever/pain medications have you taken? a. Acetaminophen (Tylenol) 
b. NSAIDS (Ibuprofen, Motrin, Advil, Naprosyn)   
c. Not Applicable (N/A) 

8. What cough/breathing medications have you 
taken? 

a. Steroid inhaler (Advair, Pulmicort, Flovent, Budesonide, Qvar, Symbicort, Beclomethasone) 
b. Pill steroid (Prednisone, Methylprednisolone, Dexamethasone)   
c. Rescue inhaler (Albuterol, ProAir, Ventolin, Proventil) 
d. Not Applicable (N/A) 

 



recover from infection. Their model predicted a minimum of 5 
days and a maximum of 35 days for COVID-19 patients to 
recover. Both approaches presented in [17, 18] rely on symptoms 
data and do not investigate the use of wearable device data for 
patient recovery estimation. We did not find any previous 
research that investigates whether wearable device data can be 
used to estimate patient recovery from COVID-19. This aligns 
with the observations of the authors in [19] who provide a review 
on the rise of wearables during the COVID-19 pandemic. None 
of the works presented in their review are focused on estimating 
patient recovery from COVID-19 symptoms. This motivates us 
to develop our own labeling logic for patient recovery in direct 
consultation with UCSD Health COVID-19 telemedicine 
doctors. In addition, the dataset we collect consists of a rich 
feature set spanning activity, sleep, stress, heart rate and SpO2 
data. Our paper provides novel insights into which lifestyle and 
physiological signals are associated with patient recovery from 
COVID-19 symptoms. 

III. METHOD 
     In this section, we first detail our study cohort and the proposed 
remote patient monitoring and reporting system. We then present 
the ML task of patient recovery classification and discuss its 
application. Finally, we describe the data preprocessing, the RF 
model, and our proposed personalization technique. 

A. Clinical Study Cohort and eCOVID System 
Our IRB-approved clinical study (protocol #181405) was in 

collaboration with UC San Diego Health and Neighborhood 
Healthcare, with patient enrollment, onboarding and 
management conducted by the Altman Clinical & Translational 
Research Institute at UC San Diego. The study was conducted 
starting in May 2020. Patients who tested positive for COVID-
19 at each location were referred to our study coordinator. 
Eligible patients were required to be over 18 years old and stable 
for monitoring in an ambulatory setting, as determined by 
healthcare personnel at the point of care when testing was 
initially ordered. The characteristics of the included cohort are 
shown in Table II. Subjects digitally consented using our 
symptom tracker mobile app, and those who did were provided 
a Garmin Vivosmart4 wearable device [20] to collect their 
lifestyle and vitals data for the study duration of up to 3 months. 
One of the deciding factors in using this device for this study is 

its ability to measure blood oxygen saturation (SpO2). Based on 
the findings of [21] and our discussion with UCSD Health 
doctors, SpO2 is a critical metric in determining the condition of 
a COVID-19 infected patient. Figure 1 displays the overall 
architecture of our remote monitoring system, namely eCOVID. 
The system consists of a symptom tracker mobile app, developed 
using the Touchwork platform and displayed in Figure 2, and the 
Garmin device. The daily questions in the symptom tracker app 
were developed in collaboration with doctors at the UCSD 
Health COVID-19 telemedicine clinic and are detailed in Table 
III. The vitals and lifestyle data collected by the Vivosmart4 
wearable are detailed in Sec. III (C). Data was collected remotely 
through the application programming interface (API) provided 
by Garmin [22].  
     The eCOVID system fused the symptoms and wearable data 
into a daily report for each patient, which was displayed on our 
online dashboard for clinicians to review. Both UCSD Health 
and Neighborhood Healthcare had separate online portals to 
view their patient data, as displayed in Figure 3. Healthcare 
workers were able to change the “Active” and “Priority” status 
in order to indicate which patients needed more timely attention. 

Table II. Cohort Statistics (n = 30). 
 

UCSD Health Neighborhood Health 

Total 23 7 

# Men 11 3 

# Women 12 4 

Age (years, mean ± SD) 44.5 ± 13.1 31.6 ± 13.5 

 

Figure 3. eCOVID dashboard displaying ambulatory COVID-19 patients. 

Figure 4. The left plot displays the number of patients who reported at least 1 day of the symptom. The right plot displays the distribution of the 
number of days each symptom was reported per patient. Only patients who reported the symptom are included in this distribution. 
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The “Active” and “Priority” statuses are a part of the system 
design and included to enhance the usability of the dashboard. 
These statuses are not used for the ML experiment. A detailed 
report for each patient could be viewed by selecting the patient’s 
ID number. The report included demographic information, 
symptom tracker app responses, and wearable device data. In 
addition, the estimated recovery status for each patient using our 
ML approach was displayed on the dashboard. This 
demonstrates how our proposed ML approach to patient 
recovery classification can be effectively incorporated into 
clinician workflows.  
     Figure 4 details the distribution of symptoms among patients 
and describes how long each symptom lasted. For fatigue, 
shortness of breath and cough, we marked the symptom as 
present if the patient reported a severity score of 2 or greater. 
The bar graph in Figure 4 displays the number of patients that 
experienced each symptom. Fatigue, shortness of breath and 
headache were the 3 most common symptoms with 23 (77%), 19 
(63%) and 17 (57%) patients reporting these symptoms, 
respectively. Chills, ageusia and subjective fevers were the 3 
least common symptoms with 8 (27%), 7 (23%) and 5 (17%) 
patients reporting these symptoms, respectively. The box plot in 
Figure 4 details how long each symptom was reported by 
patients. Only patients who reported the symptom are included 
in this analysis. Based on the median number of days, nasal/sinus 

congestion lingered the longest with a median of 15 days 
followed by ageusia with a median of 11 days. Although ageusia 
was only reported by 7 patients, the symptom lingered for a 
longer time compared to other symptoms. Subjective fevers, 
chills and chest pain were reported for the shortest period of time 
each having a median of 1 day.  
     Patients completed the daily symptom tracker an average of 
73% of days enrolled in the study. They wore the Garmin device 
an average of 90% of days enrolled in the study. This indicates 
that patient compliance with wearing the device was 17% greater 
than compliance with answering the daily symptom tracker. This 
statistic demonstrates the higher efficiency of wearable device 
data for remote monitoring and helps motivate our proposed ML 
task for patient recovery classification based on automatedly 
collected device data, as opposed to relying on manually entered 
symptom data.  

B. Patient Recovery Classification 
     The objective of this ML task is to classify whether a patient 
has recovered from COVID-19 symptoms based on their device 
data. This binary classification model can provide healthcare 
workers with automated insights into the recovery status of their 
infected patients and bypass the need for manual daily symptom 
tracking which relies on patient compliance. To the best of our 
knowledge, there is no clear definition for full recovery from 

Figure 6. Labeling logic for patient recovery classification based on symptom tracker questionnaire responses. 

Figure 5. Symptom severity progression for two ambulatory COVID-19 patients. Patient 2’s symptom severities decrease by day 7 and then sharply 
increase again after day 10. The shortness of breath (SOB), fatigue, and cough severities correspond to questions 3-5 of the symptom tracker. 



COVID-19. The US CDC recommends removal of isolation for 
COVID-19 infection when a patient’s symptoms have 
significantly improved, they have been afebrile for at least 24 
hours in the absence of fever-reducing medications, and it has 
been at least 10 days since symptom onset [23]. However, it is 
now understood some patients can suffer from ongoing 
symptoms from COVID-19 for weeks and even months [24]. 
Unlike symptom severity which can be identified by patients 
themselves, recovery is a gradual, subtle and implicit process. In 
this task, we classify whether a patient has recovered from the 
COVID-19 symptoms collected by our symptom tracker app. 
Most patients experienced a steady decline in symptom 
severities, however, some patients initially appeared to recover 
and then had symptoms re-appear. Figure 5 displays the 
symptom severity progression for the first 30 days for two 
different COVID-19 patients in terms of shortness of breath 
(SOB), fatigue, and cough. Patient 1 is an example of a patient 
who experienced a steady recovery. Patient 2, however, 
demonstrates a complicated symptom progression. The 
symptom severities for this patient declined by day 7 and then 
sharply worsened after day 10, especially for SOB and fatigue. 
All three symptoms linger for this patient for over a month.  
     A binary label is generated on a daily basis for each patient: 
recovered (0) or not recovered (1). The labelling logic for patient 
recovery was developed in collaboration with UCSD Health 
doctors and is displayed in Figure 6. If symptoms are present 
besides loss of taste/smell (Question 2), label as not recovered 
(1). We do not consider loss of smell/taste because these 
symptoms have been shown to linger after a patient has 
recovered from COVID-19 [25]. If no symptoms are marked for 
Question 2 and fatigue/cough/shortness of breath severity is ≤ 2 
(Questions 3-5), label as recovered (0). If 
fatigue/cough/shortness of breath severity is > 2 but there is an 
improvement over 3 consecutive days in severity scores, label as 
recovered (0). In order to accommodate for complex cases such 
as Patient 2 in Figure 5, in which there may be a day labeled as 
recovered (0) between days labeled as not recovered (1), we 
apply the following logic. If a patient is labeled as recovered (0) 
for 7 consecutive days, all the following labels are also marked 
as recovered (0). Otherwise, the recovered (0) days shorter than 
7 days are reverted back to non-recovered (1) days. This ensures 
there are no “recovered” days between “not recovered” days and 
vice versa. The statistics of the symptom tracker labels are 
shown in Table IV. The average number of “not recovered” and 
“recovered” samples per patient is 24 and 21, respectively. The 
median number of “not recovered” and “recovered” samples per 
patient is 16 for both. This difference in mean and median is the 
result of outlier patients who have a high amount of one label. 
There are 10 patients for which 90% of their labels are either 
“not recovered” or “recovered”. Patients with few “not 
recovered” labels may be a result of being asymptomatic or a 

delay in joining the study after being infected and testing positive. 
Patients with few “recovered” labels remained symptomatic for 
the study duration. These labels are used for the patient recovery 
classification task. Note that the recovery classification 
technique proposed here can be used with any other labeling 
logic developed by other health care providers. 

C. Device Data and Preprocessing 
     The Garmin vivosmart4 includes a heart rate monitor, 
accelerometer, ambient light sensor, and blood oxygen 
saturation (SpO2) monitor. The device uses these sensors in order 
to calculate various health parameters, including lifestyle and 
vitals information. The device data is presented in Table V and 
their descriptions are based on the Garmin API documentation 
[22]. Lifestyle features include activity (steps, distance, floors, 
active time, etc.), stress (average stress, max stress, stress 
duration, etc.), sleep timing (duration, bed time, up time), and 
sleep stages (deep, light, REM, awake). Stress-related features 
are derived based on heart rate variability [22]. The variable 
length of time in between each heartbeat is regulated by the 
body's autonomic nervous system. The less variability between 
beats equals higher stress levels, whereas the increase in 
variability indicates less stress. As mentioned in the 
introduction, the researchers in [12] found that COVID-19 
affected the number of daily steps and time asleep for patients in 
their study. This result motivates us to include all lifestyle 
features when training our patient recovery classification model. 
In addition to lifestyle factors, the vivosmart4 measures vitals 
data including heart rate and SpO2. The device is capable of 
manual SpO2 spot checks during the day and 4 hours of 
continuous measurement during sleep. Since the symptoms data 
and patient recovery classification labels are generated on a daily 
basis, we aggregate the device data features for each day. The 
Garmin Health API provides summarized activity, sleep, stress 
and heart rate features on a daily basis. The features in Table V 
marked with a * require additional processing after receiving the 
data from Garmin. These include BedTime, UpTime, MaxSpO2, 
MinSpO2, and MeanSpO2. The BedTime and UpTime features 
are encoded as the number of seconds before or after midnight 
(e.g., 11:30 PM bed time is encoded as -1800 seconds, 8:00 AM 
wake time is encoded as 28800 seconds). Since only the 
continuous SpO2 data is available through the Garmin API, we 
transform the SpO2 time series each day into the MaxSpO2, 
MinSpO2, and MeanSpO2 features displayed in Table V. Note 
that a subset of the features is marked with ^ in Table V 
indicating they are available in the dataset from [12] which we 
discuss in Sec. IV (B). Once the device data is aggregated for 
each day, we match it with the corresponding patient recovery 
label to form patient-day samples. Each patient-day sample 
consists of the recovery label and the summarized lifestyle and 
vitals features for one patient’s day in the study. Note that 
symptoms data are not directly used as part of the training data, 
but rather to generate the daily patient recovery labels. 
     Figure 7 displays a heatmap of the correlation between the 
aggregated daily lifestyle/vitals features and symptoms data for 
our study cohort. We use Spearman correlation because the 
symptom variables are not continuous. Spearman evaluates the 
monotonic relationship between two continuous or ordinal 

Table IV. Statistics for label count per patient. 
 

Mean Std. Max Min Median 

Not Recovered 24 29 85 0 16 

Recovered 21 26 76 0 16 

 



variables [26]. The color of each heatmap square describes the 
magnitude and directionality of the correlation. Darker red 
squares correspond to a stronger positive correlation while 
darker blue squares correspond to a stronger negative 
correlation. Table VI displays the top 10 most significant 
correlations between symptoms and device features and in 
Figure 7 we circle notable correlations in yellow. These include 
distance and steps vs. fatigue and shortness of breath (SOB) 
severity, and deep and REM sleep vs. cough and fatigue severity. 
The correlations for distance vs. SOB and fatigue are -0.38 and 
-0.37, respectively. The correlations for steps vs. SOB and 
fatigue are -0.32 and -0.33, respectively. It is sensible that 
distance and steps are negatively correlated with cough and SOB 
severity. A patient is less likely to be active if their symptom 
severities are higher. Deep and REM sleep duration are 
positively and negatively correlated, respectively, with cough, 
fatigue and SOB severity. The most significant correlation is 
deep sleep vs. cough, which has a correlation of 0.47. REM sleep 
is most correlated with fatigue, with a correlation of -0.34. 
According the American Academy of Sleep Medicine, as the 
immune system fights infection, the amount of time spent in 
REM sleep is decreased while deep sleep is increased [27]. This 
is because it is during deep sleep that many reparative bodily 
processes occur. This validates the directionality of the 
correlations between REM/deep sleep and symptom severities. 
While the individual correlations between other lifestyle/vitals 

features and symptoms are not as prominent, the heatmap in 
Figure 7 indicates that a combination of these features can 
provide useful information about symptom severity when 
training the ML model. Overall, these correlation observations 
help motivate our ML approach to patient recovery classification 
based on device data.  

D. Random Forest and Personalization 
We train multiple ML classifiers in order to determine which 

is most effective at modelling the patient recovery task, as 
described in Sec. IV (A). As indicated in Table VII, the Random 
Forest (RF) model results in the best performance during LOSO                             
CV. In this section, we discuss the operation of the RF model 
and our personalization technique.   

RF is an ensemble model that aggregates a collection of 
decision trees in order to reduce overfitting and the resulting high 
variance in prediction [28]. To do this, RF utilizes bootstrap 
aggregation (bagging) and feature bagging. RF produces 
bootstrap datasets that are randomly and independently drawn 
with replacement from the training dataset. Each bootstrap 
dataset has the same size as the original training set and is used 
to train a decision tree. Bootstrap aggregation in RF averages the 
prediction of all decision trees which greatly reduces the 
variance compared to a single decision tree. Moreover, since 
individual trees generated in the bagging process are identically 
distributed, the expected prediction of RF is the same as the 

Table V. Description of Garmin device features that our approach uses. Features marked with * require additional processing after receiving the data from 
Garmin. Features marked with ^ are available in the dataset from [12] which we discuss in Sec. IV (B). 

Features Description 

Steps ^ Count of steps recorded during the monitoring period. 

Distance Distance traveled in meters during the monitoring period. 

ActiveTime Portion of the monitoring period (in seconds) in which the device wearer was considered Active. This relies 
on heuristics internal to the device. 

ModerateIntensityDuration Cumulative duration of activities of moderate intensity, lasting at least 600 seconds at a time. Moderate 
intensity is defined as activity with MET value range 3-6. 

VigorousIntensityDuration Cumulative duration of activities of vigorous intensity, lasting at least 600 seconds at a time. Vigorous 
intensity is defined as activity with MET value > 6. 

FloorsClimbed Number of floors climbed during the monitoring period. 

AverageStressLevel, MaxStressLevel, 
StressDuration, RestStressDuration, 

ActivityStressDuration, LowStressDuration, 
MediumStressDuration, HighStressDuration 

Stress levels are generated on the device with values ranging from 1 to 100. Scores between 1 and 25 are 
considered “rest” (i.e., not stressful), 26-50 as “low” stress, 51-75 “medium” stress, and 76-100 as “high” 
stress. These numbers are derived based on heart rate variability (HRV) and will adjust to the wearer of the 
device based on the user’s natural biometric norms. 

SleepDuration ^ Length of the sleep period in seconds. 

BedTime *^, UpTime *^ Time the user went to bed and woke up. These are encoded as the number of seconds before or after midnight 
(e.g., 11:30 PM bed time is encoded as -1800 seconds, 8:00 AM wake time is encoded as 28800 seconds). 

DeepSleepDuration ^, LightSleepDuration ^, 
REMSleepDuration ^, AwakeDuration ^ 

Time in seconds the user spent in deep/light/REM/awake sleep stage during the sleep period. 

MinHeartRate ^, MaxHeartRate ^, 
MeanHeartRate ^ 

Minimum/Maximum/Mean of heart rate values captured during the monitoring period, in beats per minute. 

RestingHeartRate ^ Average heart rate at rest during the monitoring period, in beats per minute. 

MinSpO2*, MaxSpO2*, MeanSpO2* Minimum/Maximum/Mean of SpO2 values captured during the monitoring period, in percentage. These are 
calculated from 4 hours of continuous measurement during sleep. 

 



expected prediction of individual trees. Combining the above 
facts, RF has a lower variance than individual trees, while its bias 
remains the same [29]. RF further reduces the correlation 
between its member decision trees by introducing feature 
bagging, which randomly selects a subset of features when 
constructing each tree. In addition, RF is known to perform well 
even when using redundant or irrelevant features. Since we 
utilize multiple lifestyle and vitals features for model training, it 
is possible that some features do not provide useful information. 
Since RF is more robust to noisy features as compared to the 
other models [30], redundant or irrelevant features will not 
greatly impact performance.  

Multiple studies that focus on ML for health applications 
have shown that model personalization is a key step in improving 
performance due to the physiological differences between 
patients [31-34]. In this study, we observe that vitals and lifestyle 
factors vary among patients and propose a RF-based 
personalization technique to tune the model to each patient. Our 
technique involves including the first k days of labeled data from 
the test patient in the training set. In the traditional RF 
bootstrapping process, each training sample has uniform weight, 

which means each data sample is resampled with the same 
probability. To emphasize the test patient’s calibration samples 
during model training, we assign a greater weight to these k 
samples using the Weighted Bootstrapping algorithm [35]. In 
order to implement this algorithm, a vector of sample weights 
𝑾𝑾 = 𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐, … ,𝒘𝒘𝑵𝑵 is maintained where N is the total number 
of training samples. Weights 𝒘𝒘𝟏𝟏, … ,𝒘𝒘𝒌𝒌  correspond to the k 
personalization samples from the test patient and are given larger 
values. Weights 𝒘𝒘𝒌𝒌+𝟏𝟏, … ,𝒘𝒘𝑵𝑵  correspond to the data samples 
from the remaining patients used for training and are assigned 
lower values. The operation of the Weighted Bootstrapping 
algorithm is as follows [35]: In step 1, a new bootstrap dataset 
for one decision tree is initialized. In step 2, the weights in 𝑾𝑾 
are mapped into the interval �𝟎𝟎, ∑ 𝒘𝒘𝒋𝒋,𝑵𝑵

𝒋𝒋=𝟏𝟏 �  with subintervals 
𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐, … 𝑰𝑰𝑵𝑵. The length of each subinterval is proportional to the 
value of its weight. In steps 3 to 7, each data sample is drawn 
using subintervals 𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐, … 𝑰𝑰𝑵𝑵  and the uniform distribution 
function. The process repeats N times such that the size of all 
bootstrap datasets equals that of the original dataset. 
Consequently, the samples with higher weights are more likely 
to appear in each bootstrap dataset. In Sec. IV (B), we compare 

Weighted Bootstrapping Algorithm 

Input: Training dataset 𝑿𝑿 = {𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2 …𝑁𝑁 }, a sequence of 
N examples, and weights of the N examples 𝑾𝑾 = {𝑤𝑤𝑖𝑖 , 𝑖𝑖 =
1,2 …𝑁𝑁}, 𝑤𝑤𝑖𝑖 ∈ [0,1],∀𝑖𝑖 
1: Create a new dataset 𝑿𝑿′ with the same size as 𝑿𝑿 
2: Partition the interval �0,∑ 𝑤𝑤𝑗𝑗𝑁𝑁

𝑗𝑗=1 � into 𝑁𝑁 subintervals 𝐼𝐼1 =
    (0,𝑤𝑤1),   𝐼𝐼2 = (𝑤𝑤1,𝑤𝑤1 + 𝑤𝑤2), …𝐼𝐼𝑁𝑁 = (∑ 𝑤𝑤𝑗𝑗𝑁𝑁−1

𝑗𝑗=1 ,∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1 ) 

3: for 𝑖𝑖 = 1 to 𝑁𝑁 do  
4:      Simulate 𝑢𝑢~𝑈𝑈�0,∑ 𝑤𝑤𝑗𝑗𝑁𝑁

𝑗𝑗=1 �,𝑈𝑈 is uniform distribution    
         function where the probability density of 𝑈𝑈(𝑎𝑎, 𝑏𝑏) is  

         𝑓𝑓(𝑥𝑥) = �
1

𝑏𝑏−𝑎𝑎
, 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

0,   otherwise
 

5:      Identify the interval 𝐼𝐼𝑗𝑗∗, 𝑗𝑗∗ ∈ {1,2 …𝑁𝑁 } such that 𝑢𝑢 ∈ 𝐼𝐼𝑗𝑗∗ 
6:      Add sample 𝑥𝑥𝑗𝑗∗ to 𝑿𝑿′ 
7: end for 
Output: 𝑿𝑿′ 

Figure 7. Spearman correlation between lifestyle/vitals and symptoms. 
Notable correlations are circled in yellow.  

Table VI. Top 10 correlations between symptoms and device features. 

Symptom Device Feature Spearman Correlation 

Cough DeepSleepDuration 0.47 

Fatigue DeepSleepDuration 0.46 

SOB DeepSleepDuration 0.38 

SOB DistanceInMeters -0.38 

Fatigue DistanceInMeters -0.37 

Fatigue REMSleepDuration -0.34 

Cough TotalSleepDuration 0.33 

Fatigue Steps -0.33 

SOB Steps -0.32 

Nasal Congestion FloorsClimbed -0.32 

 



the performance for different values of k and different values of 
𝒘𝒘𝟏𝟏, … ,𝒘𝒘𝒌𝒌. Figure 8 displays a block diagram of our proposed 
RF personalization technique. After preprocessing each patient’s 
data, Hybrid-CV is carried out in which the training and test sets 
are split on a per patient basis and the first k days of test patient 
data are added to the training set as personalization samples, as 
shown in Figure 8. These k samples are assigned greater weights, 
which are bolded in the figure, during weighted bootstrapping. 
After training, the model is evaluated on the remaining, future 
data samples of the test patient. 

IV. RESULTS AND DISCUSSION 
     In this section, we describe the experiment settings and present 
patient recovery classification results. We discuss the effects of 
our RF model personalization technique on performance and carry 
out feature analysis using Shapley Values in order to interpret 
what the model has learned. Finally, we provide a discussion on 
the challenges encountered during this study.  

A. Experiment Setting 

     We implement and evaluate our machine learning models 
using the Scikit-learn library in the python environment on an 
Intel i5 3.2GHz quad-core and 16GB RAM computer. Accuracy, 
sensitivity, specificity, and F1-score are calculated and used as 
our evaluation metrics for the patient recovery classification task. 
For this task, a negative and positive sample correspond to a 
“recovered” and “not recovered” patient-day sample, 
respectively. Accuracy returns an overall measure of how much 
the model is correctly predicting on the entire set of test data. 
Sensitivity and specificity measure the true positive and true 
negative rate, respectively. F1 score is calculated as the 
harmonic mean of precision and recall (sensitivity) and is used 
to find the best trade-off between the two quantities [36]. As a 
result, we use F1 score for deciding the top performing model. 
     We carry out LOSO CV to mirror the clinically relevant use-
case scenario of diagnosis for newly infected subjects [43]. 
LOSO CV separates the data into train and test sets on a per 

patient basis in order to simulate the practical application. This 
data split ensures that data from the same patient does not appear 
in both the training and testing sets. We use LOSO CV to 
compare the performance of different ML models. We then carry 
out Hybrid-CV, in which a specified number of samples from 
the test patient are included in the training set. These 
personalization samples are not included in the test set to ensure 
there is no overlap between train and test sets at the sample level. 
We compare how performance is affected by applying varying 
levels of personalization using our RF-based personalization 
technique described in Sec. III (D). Since the number of samples 
for each patient is different based on their participation in the 
study, the training and testing sets will vary in size for both CV 
experiments. Instead of averaging the results over each data split, 
we save the model predictions for each data split and calculate 
metrics over all predictions. This ensures that each patient-day 
contributes equal weight to the final result. 
     In the LOSO CV experiment, we compare RF with the 
following ML models: logistic regression (LR) [37], k-nearest 
neighbors (KNN) [38], support vector machine (SVM) [39], 
artificial neural network (ANN) [40], and long short-term 
memory (LSTM) neural network [41]. Model hyperparameter 
tuning is performed with each training set using a randomized 
search over a predefined hyperparameter grid for each model. 
Since LSTM models take sequential data as input, we organize 
the lifestyle and vitals features into sequential data samples using 
a window length of 7 days and a step size of 1 day. A step size 
of 1 day is used to extract the maximum number of samples. As 
a result, each input sample has a dimension of (7, Nfeatures) where 
Nfeatures represents the number of lifestyle and vitals features. The 
patient recovery label for the last day of each window is assigned 
to each input sample. We train the LSTM as a many-to-one 
model, as opposed to a many-to-many model, since the 
application of this method is only concerned with estimating 
whether the patient is recovered or not for the current day. In 
addition, training the LSTM to estimate one label at a time 
matches the process for the other ML models, resulting in a fairer 

Figure 8. Block diagram of our proposed RF personalization approach. After data preprocessing, the first k samples from the test patient are 
included in the training set during Hybrid-CV. These samples are assigned larger weights, which are bolded in the figure, during weighted 

bootstrap aggregation. After training, the model is evaluated on the remaining test patient data samples. 



comparison. We carry out two LSTM experiments using 16 and 
32 hidden units for the LSTM layer followed by a fully 
connected layer with 1 output unit. For these experiments, we 
train the models using the Adam optimizer [42] and a dropout 
rate of 50% to reduce overfitting. For the LSTM layers, we use 
a sigmoid activation function for the input, forget and output 
gates, and a hyperbolic tangent (tanh) activation function for the 
cell state and hidden state. The fully connected layers use a 
sigmoid activation function and we use binary cross entropy loss 
as the loss function. We experimented with different numbers of 
training epochs and batch sizes and found that 25 epochs and a 
batch size of 32 resulted in the best performance. 

B. Patient Recovery Classification Results  

Accuracy, sensitivity, specificity, and F1-score for each ML 
model during LOSO CV are presented in Table VII. The LSTM-
32 model achieves the highest accuracy and sensitivity, both 
equal to 0.64, while the RF model achieves the highest 
specificity and F1 score equal to 0.78 and 0.66, respectively. As 
described in the experiment setting, we use F1 score for deciding 
the top performing model since this metric calculates the tradeoff 
between precision and sensitivity. Since RF achieves the highest 
F1 score, we conclude that RF is the best performing model for 
patient recovery classification. We attribute the RF’s top 
performance to its ability to reduce the variance in prediction via 
the bagging process and its robustness to redundant or irrelevant 
features. The LSTM-32 model is the second-best performing 
model, indicating that meaningful temporal information exists in 
the data for estimating recovery from COVID-19. Since RF is 
the top performer, we use this model in the next experiment to 
understand how the number of personalization samples impacts 
RF performance.      
     Next, we discuss the results of the Hybrid-CV experiment. As 
mentioned in the experiment settings, LOSO CV separates the 
data into train and test sets on a per patient basis. Since 
physiology and lifestyle differ between patients, we apply 
varying levels of personalization during the Hybrid-CV 
experiment. We implement our RF-based personalization 
technique by including the first 1-5 days of test patient data in 
the training set. These personalization samples are assigned a 
larger weight so that they are sampled more frequently during 
the bootstrap aggregation step. Table VIII displays the results for 
different amounts of personalization. Evidently, the 
classification results are worse when no personalization is 
applied. The accuracy, sensitivity, specificity and F1-score are 
0.59, 0.52, 0.78, and 0.66, respectively, when no personalization 
is applied. As personalization samples are included in the 
training set, accuracy, sensitivity and F1-score increase, while 
specificity decreases. When using 5 personalization samples, the 
accuracy, sensitivity, specificity and F1-score are 0.82, 0.89, 
0.63, and 0.88, respectively. Since the personalization samples 
for each patient correspond to their first 1-5 days in the study, 
these samples are primarily labeled 1 or “not recovered”. This 
means that as more personalization samples are included in the 
training set, the model is able to increasingly learn the infected 
baseline of the patient based on their vitals and lifestyle data. 
This causes the sensitivity to increase since the model will be 

able to increasingly correctly classify a patient who has not 
recovered. This corresponds to increasing true positives 
(classifying a patient as not recovered when they are indeed not 
recovered) while minimizing false negatives (classifying a 
patient as recovered when they are not recovered). As the 
sensitivity increases, the specificity decreases. Since the model 
is increasingly tuned to classify a patient as not recovered, this 
will result in more false positives and a lower specificity. For 
this ML task, false positives are more acceptable than false 
negatives. Classifying a patient as not recovered when they 
actually are recovered is less harmful than classifying a patient 
as recovered when they are not recovered. Overall, adding 
personalization samples increases the model performance. When 
applying this personalization technique to a new patient, the first 
few days will involve data collection without any classifications 
from the ML model. After this initial data collection, the 
personalized model will provide estimations with improved 
accuracy, sensitivity and F1-score. The results demonstrate the 
potential for ML-assisted remote patient monitoring to 

Table VII. Comparison of ML model performance for LOSO CV. 

Model Acc Sens Spec F1 

LR 0.60 0.61 0.52 0.61 

ANN 0.59 0.62 0.62 0.63 

SVM 0.54 0.61 0.59 0.62 

KNN 0.55 0.51 0.68 0.60 

LSTM-16 0.63 0.56 0.71 0.61 

LSTM-32 0.64 0.64 0.60 0.64 

RF 0.59 0.52 0.78 0.66 

 
Table VIII. Hybrid-CV results using different levels of personalization 

Personalization Samples Acc Sens Spec F1 

0 0.59 0.52 0.78 0.66 

1 0.63 0.59 0.75 0.70 

2 0.67 0.66 0.71 0.75 

3 0.72 0.73 0.68 0.79 

4 0.80 0.86 0.64 0.86 

5 0.82 0.89 0.63 0.88 

 
Table IX. Performance comparison when applying different RF bootstrap 

aggregation weights to 5 personalization samples. 

Bootstrap Aggregation 
Weights 

Acc Sens Spec F1 

1 0.70 0.69 0.73 0.77 

10 0.82 0.89 0.63 0.88 

100 0.81 0.88 0.62 0.87 

 



supplement traditional manual monitoring tools, like daily 
manual symptom tracking. 
     The results presented in Table VIII are generated by setting 
the bootstrap aggregation weights for the personalization 
samples to 10. This means these samples are 10 times more 
likely to be sampled during the RF weighted bagging process. In 
Table IX, we compare how classification performance is 
affected by applying different bagging weights to 5 
personalization samples. We set the weights to 1, 10 and 100. 
Using a bagging weight of 1 means the personalization samples 
have the same probability of being sampled as the training data 
from other patients. Evidently, a bagging weight of 1 produces 
worse performance with an accuracy, sensitivity, specificity and 
F1-score of 0.7, 0.69, 0.73, and 0.77, respectively. In this case, 
the personalization samples are not emphasized and the model is 
not effectively calibrated. Increasing the bagging weight from 10 
to 100 does not improve model performance. This indicates that 
at a certain weight, the personalization samples are sampled 
frequently enough during bagging to effectively calibrate the 
model. Further increasing the bagging weight does not provide 
additional utility in model personalization.  
     In order to extend the evaluation of our proposed method, we 
applied our approach to the dataset collected in [12]. This dataset 
includes sleep, heart rate and steps data collected from a 
wearable device, and the date of first symptoms and date of 
recovery which are manually recorded by each patient. Since this 
dataset does not include SpO2, stress or activity (besides steps) 
data, the number of features is significantly less than our own 
dataset (12 vs. 28). In Table V, features marked with ^ are 
available in the dataset in [12]. We labelled all days between the 
start of symptoms and recovery dates as “not recovered” and all 
days after the recovery date as “recovered”. We then combined 
these labels with the corresponding device features to create the 
dataset in the same manner as our experiment setting. After these 
data processing steps, 15 patients had sufficient data to be 
included in this experiment. Table X displays the results when 
applying our method to this dataset. We train a Random Forest 
model with and without personalization and calculate the 
accuracy, sensitivity, specificity and F1-score. We use 5 samples 
when applying our personalization technique and observe that 
the performance significantly improves compared to the non-
personalized results. With personalization, our approach 
achieves an accuracy, sensitivity, specificity and F1-score of 
0.61, 0.55, 0.67, and 0.61, respectively.  Evidently, the 
performance metrics are not as good for this dataset. This may 
be due to the limited feature set and inaccurate recovery dates 
recorded by patients. We observe similar patterns in the results 
compared with our own dataset which include that there is a 
performance enhancement when applying our personalization 
technique. Overall, these consistent observations between our 

dataset and the dataset in [12] indicate that our proposed 
approach is not only applicable to our dataset, but can potentially 
be applied to different datasets collected in clinical practice. 

C. Model Interpretability via Shapley Value Analysis 

     Next, we utilize Shapley Values [44, 45] in order to determine 
which lifestyle and vitals features have the most significant 
effect on model classification for our dataset. Shapley Value 
analysis is a model-agnostic interpretation method derived from 
game theory. Given a set of feature values and a trained machine 
learning model, the estimated Shapley value indicates how each 
feature contributes to the model’s classification. We use the tree 
SHAP (SHapley Additive exPlanations) framework [46, 47], 
which is optimized for tree-based models, to interpret the output 
of the RF model for patient recovery classification. Figure 9 
displays the Shapley results where the features are ranked from 

Table X. Evaluation of proposed method on open dataset from [12]. 
 

Acc Sens Spec F1 

W/O Personalization 0.49 0.33 0.73 0.44 

W/ Personalization 
(5 samples) 

0.61 0.55 0.67 0.61 

 

Figure 10. Impact of feature categories on model output. Features are 
grouped into 5 categories and a categorical SHAP score is calculated. Red 

or green bars indicate that an increase in the category’s feature values 
pushed the model to output “not recovered” or “recovered”, respectively.   

Figure 9. Summary of Shapley top features where each point corresponds 
to a data sample. The x-axis represents a feature’s impact on model output. 

Positive SHAP values push the model to output 1 or “not recovered”. 



the top to bottom based on their impact on the model’s output. 
Each point on the plot corresponds to an individual data sample 
and represents the contribution from the feature listed on the Y-
axis to the RF’s classification. The placement on the X-axis 
represents the amount of positive/negative contribution to the 
classification. Positive contribution corresponds to pushing the 
model to estimate that a patient is not recovered. The color of 
each point represents the actual value of the feature (red is high 
while blue is low). The top two features based on Shapley 
analysis include deep sleep duration and resting heart rate. 
Higher values of deep sleep duration (colored in red) contribute 
to a positive, or not recovered, classification. This observation 
aligns with the correlation analysis presented in Sec. III (C). As 
mentioned earlier, deep sleep increases when a patient is sick 
since this is when many reparative bodily processes occur. 
Increased resting heart rate also contributes to a positive 
classification by the RF model. This relationship makes sense 
since resting heart rate will decrease as a patient recovers. 
Additional observations include that a lower number of floors 
climbed contributes to a positive classification while an 
increased mean SpO2 contributes to a negative, or recovered, 
classification. Both of these relationships are sensible, as a 
patient who has not recovered will be less active and a patient 
who has recovered will have a higher SpO2.  
     In addition to analyzing the impact of individual features, we 
grouped the features into 5 categories (Activity, Sleep, Stress, 
Heart Rate and SpO2) and investigated their impact on model 
output. A SHAP score for each category was calculated as the 
average of the absolute SHAP values for the features in that 
category. Figure 10 displays the ranking of feature categories 
based on their categorical SHAP score. We also examined 
whether, on average, an increase in the feature values for each 
category pushed the model to estimate “recovered” or “not 
recovered”. In Figure 10, a red colored bar indicates that an 
increase in the category’s feature values pushed the model to 
output “not recovered”. A green colored bar indicates that an 
increase in the category’s feature values pushed the model to 
output “recovered”. Evidently, the sleep category had the most 
significant impact on model output. An increase in feature values 
in the sleep and heart rate categories pushed the model to 
estimate “not recovered” (red bars) while an increase in feature 
values in the stress, activity and SpO2 categories pushed the 
model to estimate “recovered” (green bars). Overall, the 
individual feature and feature category Shapley analysis 
demonstrates that our model can learn clinically relevant 
relationships between device data and the status of patients. The 
interpretability of a ML model is necessary for humans to 
understand what the model has learned, especially in medical 
applications.  

D. Limitations and Research Challenges Encountered  

In this section, we discuss limitations to our proposed 
approach and challenges faced while implementing this study. 
One limitation in our approach is that patients were only enrolled 
and provided devices for data collection after testing positive for 
COVID-19. It is likely that some patients started experiencing 
symptoms before going for a COVID-19 test. This meant we 

were not able to collect symptoms and wearable data during the 
initial days of the infection. In order to ensure that data can be 
collected before and during the onset of COVID-19 infection, 
participation could be made available to a larger number of 
patients that already own a wearable device. After testing 
positive for COVID-19, a patient could immediately enroll and 
begin sharing both past and current data. Another limitation to 
our approach is that the RF model does not process data 
sequentially while the progress of COVID-19 is sequential. In 
this work, we experimented with LSTM, a popular temporal 
model, however, found its performance to be worse than RF. 
Training an LSTM requires significantly more data since neural 
networks are highly prone to overfitting when the underlying 
dataset size is small [48, 49]. In order to fully utilize temporal 
relationships in the data, we plan to further investigate sequence 
modeling with additional data in our future work. This will 
include implementing many-to-many sequence models using 
different time windows to learn temporal progression along with 
the label. In addition, a larger dataset can enable the use of 
additional features such as patient demographic information. 
The model may learn relationships between recovery from 
COVID-19 and demographic data such as age, gender and 
ethnicity. 

Concern over privacy was an issue encountered during 
recruitment for this study. As mentioned in Sec. III (A), we 
recruited patients from both the UCSD Health and 
Neighborhood Healthcare (NH) COVID-19 telemedicine clinics. 
NH is a community clinic that primarily provides care to 
underserved populations. In order to increase accessibility to our 
study, we developed a Spanish version of our symptom tracker 
app with assistance from NH. Overall, we experienced more 
difficulty recruiting from NH. One reoccurring reason why NH 
patients did not want to partake in our study included a concern 
over privacy. Certain patients expressed discomfort over 
wearing the device 24/7 due to concerns of being tracked. Our 
recruitment personnel would highlight that the device does not 
collect any location data, however, certain patients still declined 
participation. The above challenge encountered during our study 
showed that privacy concerns and lack of trust in wearables may 
further limit access and use of digital technologies by 
underserved populations, contributing to an increased digital 
divide in healthcare. As healthcare begins to rely more on digital 
technologies, these concerns must be addressed in order to 
ensure equal access to high quality healthcare [50]. 

V. CONCLUSION 
     In this paper, we propose an intelligent remote monitoring 
platform, namely eCOVID, for enhanced COVID-19 ambulatory 
care. Based on data collected from our study with the UCSD 
Health and Neighborhood Healthcare COVID-19 telemedicine 
clinics in San Diego County, we demonstrate correlations between 
automatically collected wearable data and manually entered 
symptom data. We propose a novel ML approach to estimate 
whether or not a patient has recovered from COVID-19 symptoms 
based on the automatically collected wearable data. Our results 
demonstrate that ML-assisted remote monitoring using wearable 



data can supplement or be used in place of manual daily symptom 
tracking which relies on patient compliance. 
     By developing and demonstrating the ability to track patient 
recovery status remotely, our approach can enable more optimal 
care of COVID-19 ambulatory patients at scale.  Care teams will 
be able to track patient recovery efficiently through automatically 
generated and updated dashboards instead of the current practice 
of manual symptom tracking and phone calls, the latter becoming 
ineffective when there is a surge in cases. This shift can lead to 
significant improvement in the efficiency and scalability of 
ambulatory patient care, while at the same time enabling savings 
in human and equipment resources. Moreover, the approach can 
be used for providing scalable and efficient care for future 
pandemic and epidemic challenges. 
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