
 
Abstract—The effectiveness of traditional physical therapy 

may be limited by the sparsity of time a patient can spend with 

the physical therapist (PT) and the inherent difficulty of self-

training given the paper/figure/video instructions provided to the 

patient with no way to monitor and ensure compliance with the 

instructions. In this paper, we propose a cloud-based physical 

therapy monitoring and guidance system. It is able to record the 

actions of the PT as he/she demonstrates a task to the patient in 

an offline session, and render the PT as an avatar. The patient can 

later train himself by following the PT avatar and getting real-

time guidance on his/her device. Since the PT and user (patient) 

motion sequences may be misaligned due to human reaction and 

network delays, we propose a Gesture-Based Dynamic Time 

Warping algorithm that can segment the user motion sequence 

into gestures, and align and evaluate the gesture sub-sequences, 

all in real time. We develop an evaluation model to quantify user 

performance based on different criteria provided by the PT for a 

task, trained with offline subjective test data consisting of user 

performance and physical therapist scores. Moreover, we design 

three types of guidance which can be provided after each gesture 

based on user score, and conduct subjective tests to validate their 

effectiveness. Experiments with multiple subjects show that the 

proposed system can effectively train patients, give accurate 

evaluation scores, and provide real-time guidance which helps the 

patients learn the tasks and reach the satisfactory score with less 

time. 

Index Terms— dynamic time warping, gesture segmentation, 

motion data alignment, physical therapy, real-time guidance 

 

I. INTRODUCTION 

In recent years, the emergence of various medical sensors 

and monitoring devices has led to the widespread development 

of smart healthcare which can provide cheaper, faster, and 

more effective monitoring and treatment for patients [1]-[5]. 

As a widely used type of rehabilitation in the treatment of 

many diseases, physical therapy is a promising field in smart 

healthcare applications. Traditional physical therapy involving 

training in professional therapy sessions can be expensive and 

even unaffordable for many patients. Even if patients are 

instructed in therapy sessions, they need to practice at home 

by following paper or figure instructions, which cannot 

provide effective feedback and track patient performance. To 

address this problem, virtual training systems based on 

rendering technologies and motion capture sensors such as 

Microsoft Kinect [6] are being developed [7], [8]. In the 

meantime, the use of mobile devices has become pervasive – 

for example, in June 2016, mobile applications and browsers 

accounted for 67% of digital media time spent in the United 

States [9]. In addition, cloud computing has started being used 

as an alternative approach for mobile health applications [10], 

computer games [11], etc., to make up the inherent hardware 

constraint of mobile devices in memory, graphics processing 

and power supply when running heavy multimedia and 

security algorithms. In cloud-based mobile applications, all 

the data and videos are processed and rendered on the cloud, 

which makes it superior to local processing on desktop 

computers for its portability across multiple platforms. Thus, 

this solution can enable users to use the system at home or 

away, e.g. at hotels while traveling, making it more flexible 

and usable. In this paper, we combine 1) rendering technology, 

2) motion capture based on Microsoft Kinect and 3) cloud 

computing for mobile devices to propose a cloud-based real-

time physical therapy instruction, monitoring and guidance 

system. The proposed system enables a user to be trained by 

following a pre-recorded avatar instructor, monitors and 

quantifiably measures user performance, and provides real-

time textual and visual guidance on his/her mobile device as 

needed to improve the user’s performance. Note that in this 

paper, we use the terms “user” and “patient” interchangeably. 

The architecture of the proposed cloud-based physical 

therapy monitoring and guidance system is shown in Fig. 1. 

Note that the physical therapy tasks discussed in this paper are 

movement based tasks. Fig. 1(a) shows the offline session, in 

which a physical therapist (PT) defines the criteria and 

satisfactory score for a task, and also demonstrates the task, 

with his/her motion data captured by the Kinect sensor and 

his/her avatar recorded and trained on a game development 

platform Unity [12]. (To avoid confusion, we use the 

abbreviation “PT” to refer to the PT avatar showing on the user 

device, and use “physical therapist” to refer to the real physical 

therapist colleague in this project team.)  For each task, an 

evaluation model is trained from a subjective test, which is 

used to evaluate the user’s performance on this task. Fig. 1(b) 

shows the online home session.  A training video is transmitted 

through a wireless network to the user device. The user 

watches the training video and tries to follow the task. 

Simultaneously, his/her movements are captured by Kinect 
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and uploaded to the cloud. On the cloud, the proposed Gesture-

Based Dynamic Time Warping algorithm segments the user’s 

motion sequence into gestures and aligns the motion data of 

the PT and user in real time.  User’s accuracy is determined by 

transforming the user’s errors into an overall score using the 

evaluation model obtained from the offline session. The 

alignment results are processed by a guidance logic. The user 

can progress to the next task if and when his/her accuracy 

reaches a satisfactory score, otherwise a guidance video is 

rendered and transmitted to the user device to help the user 

calibrate his/her movements. 

 

 
(a)  

 
(b) 

Fig. 1. Architecture of cloud-based physical therapy monitoring and 

guidance system. (a) Offline session. (b) User home session.  

 

The proposed system has the ability to more effectively and 

efficiently train people for different types of tasks, like knee 

rehabilitation, shoulder stretches, etc. Although other avatar-

based training systems exist, our system provides real-time 

guidance rather than just providing scores. This feature allows 

the system to cater to the abilities of the user and to react to 

the user’s performance by demonstrating the necessary 

adjustments to establish optimal conditions. In essence, our 

system is dynamic, allowing every user experience to be 

distinct. Moreover, together with the offline step of capturing 

and training an avatar for the PT tasks customized to a 

particular user, the proposed system enables personalized 

physical therapy training.  

Although the platform has the advantages as mentioned 

above, human reaction delay (delay by user to follow 

instructions) and wireless network delay (which may delay 

when the cloud rendered avatar video reaches the user device) 

may cause challenges for correctly calculating the accuracy of 

the user’s movements compared to the PT’s movements. In 

particular, the delay may cause the two motion sequences to 

be misaligned with each other and make it difficult to judge 

whether the user is following the PT correctly. Therefore, we 

apply Dynamic Time Warping (DTW) algorithm to address the 

problem of motion data misalignment. Considering the fact 

that DTW can only be applied after the user finishes the whole 

task, we further propose the Gesture-Based Dynamic Time 

Warping algorithm to segment the whole user motion 

sequence into gestures to enable real-time evaluation and 

guidance for the user. To evaluate the user’s performance 

correctly, an evaluation model is trained by collecting data 

from subjective test and based on the professional advice of 

the physical therapist in our team. To help the user improve 

accuracy, we design visual/textual/combined guidance and 

conduct subjective test to validate their effectiveness. We have 

implemented the proposed algorithms in a prototype avatar 

based real-time guidance system and conducted experiments 

using wireless network profiles and on a real cloud 

environment. Experimental results show the performance 

advantage of our proposed method over other alignment 

methods, as well as the feasibility and effectiveness of our 

proposed cloud-based physical therapy monitoring and 

guidance system. 

A preliminary version of this work has been reported in [13]. 

Compared with [13], we have developed a new real-time 

monitoring and guidance system in this paper using Unity [12], 

which enables more effective avatar modeling, user 

performance tracking, and guidance design and delivery. The 

motion data are extended from one dimension to multi 

dimensions. In user performance evaluation, we present a new 

Gesture-Based Dynamic Time Warping algorithm which 

significantly enhances the accuracy of gesture segmentation 

and reduces segmentation delay, compared to the algorithm we 

presented in [13]. (In the rest of this paper, we use GB-DTW0 

to refer to the algorithm proposed in [13] and GB-DTW-A to 

refer to the new algorithm proposed in this paper where “A” 

means more accurate segmentation.) Experimental results are 

provided to demonstrate the superior performance of the new 

GB-DTW-A algorithm. Furthermore, the user performance 

evaluation model is completely redesigned based on a 

procedure involving subjective testing. A new guidance 

system is designed which can provide more intuitive and 

detailed guidance. Effectiveness of the proposed real-time 

guidance, not discussed in [13], is validated with a new 

subjective study. The main overlap of this paper with [13] is in 

the introduction of the classical DTW algorithm (Section IV-

A) and part of the experimental results in Section V-A. 

The rest of the paper is organized as follows: Section II 

reviews related work about automatic training systems for 

physical therapy and their related user performance evaluation 

techniques and guidance system. In Section III, we introduce 

the construction of motion data and the data misalignment 

problem. Section IV proposes the data alignment approach and 

the evaluation model for the user’s performance, as well as the 

guidance design in the proposed system. Section V presents 

the experimental results of motion data alignment and 

performance evaluation using real network profiles and on a 

real cloud environment, and also validates the effectiveness of 

guidance. Section VI concludes the paper and discusses future 

work. 

 



II. RELATED WORK 

A. Automatic Training System for Physical Therapy 

Physical therapy is a widely used type of rehabilitation in 

the treatment of many diseases. Normally, patients are 

instructed by specialists in physical therapy sessions and then 

expected to practice the activities at home, in most cases 

following paper/figure instructions they are given in the 

sessions. However, they cannot get useful feedback about their 

performance and have no idea how to improve their training 

without the supervision of the professional physical therapists. 

To address this problem, some automatic training systems 

have been created to train people at home. In [8], the authors 

use the marker-based optical motion capture system Vicon and 

prove its effectiveness in gait analysis on subjects with 

hemiparesis caused by stroke. A wearable electronic device 

called Pt Viz is developed for knee rehabilitation [14]. 

Furthermore, Microsoft Kinect sensor is proved of high 

accuracy and more convenient in detecting the human skeleton 

compared with wearable devices [15].  Authors in [16] develop 

a game-based rehabilitation system using Kinect for balance 

training. In [17], Kinect is used to track arm movements to 

help young adults with motor disabilities. In our proposed 

system, Kinect is used to track physical therapy tasks for its 

efficiency in full-body and limb tracking, as well as being 

readily available, easy to setup, and low-cost. Besides, our 

proposed system is superior to the above Kinect-based systems 

for its high accuracy and reliability in user performance 

evaluation and guidance design. In [16] and [17], Kinect is 

used primarily to motivate the users, without accurate 

feedback on the user’s performance. Our proposed evaluation 

method addresses two kinds of delay problem in the user 

motion sequence, which will be discussed in the following 

sections. 

 

B. User Performance Evaluation 

In physical therapy, patients’ movements need to be 

carefully controlled due to their reduced mobility and the 

potential for re-injury. Therefore, user performance evaluation 

is an important part in these automatic training systems to 

remind patients of any incorrect motion. To evaluate the user’s 

performance, authors in [18] propose to compare the skeletons 

of the trainee and the trainer tracked by Kinect sensor. First, 

skeleton of the trainee is scaled by resizing each bone to match 

the size of the corresponding bone of the trainer. Then the two 

skeletons are aligned by aligning the hips which are 

considered to be the hierarchical center of the skeleton. Finally, 

the trainee’s performance can be evaluated by calculating the 

Euclidean distance between the trainee’s and trainer’s joints. 

However, the assumption of this approach is that the trainee 

follows the trainer timely since they use a window of 0.5s for 

any target frame to search for the best matching posture. For 

some challenging tasks, it might be difficulty for the user, 

especially for patients with injuries, to catch up with the 

trainer’s movements. In this case, motion data of the trainer 

and the trainee are mismatched and the best matching posture 

cannot be found within the 0.5s window. 

To address the misalignment problem, authors in [19] 

propose to use Maximum Cross Correlation (MCC) to 

calculate the time shift between the standard/expected motion 

sequence and the user’s motion sequence. Then by shifting the 

user’s motion sequence by the estimated time shift, the two 

sequences are aligned and their similarity can be calculated. 

However, this approach assumes uniform delay during the 

user’s movements and cannot address the problem of motion 

data distortion, which will be discussed in Section III-B. 

In [20], a training system based on wearable sensor use 

DTW to detect and identify correct and incorrect executions in 

an exercise. It is aimed at finding the best match of the user’s 

execution among some correct and incorrect templates to 

judge the user’s performance and give the error type if any. 

However, error templates can hardly cover all the mistakes 

patients may make, and computation increases with more 

templates. Besides, it can only be applied offline when the 

entire user motion sequence is obtained. In comparison, the 

proposed system does not need any pre-recorded error 

template. Besides, the proposed GB-DTW-A algorithm 

enables real-time evaluation and guidance for the user. 

 

C. Guidance Design 

To help the user improve performance, many types of 

guidance system have been designed. OctoPocus [21] and 

ShadowGuides [22] teach user gestures and movements on 

touch screens. LightGuide [23] projects guidance hints 

directly on a user’s body to guide the user in completing the 

desired motion. In [14], wearable sensor made of lighted fabric 

visualizes the correct knee angle for knee rehabilitation 

exercises. BASE [24] based on kinematic sensor designed for 

older adults displays colored markers overlaid on the body to 

show the user’s position and target position. In [18], an 

augmented reality mirror and colored circles/lines overlaid on 

the user’s body are used to instruct the user and label incorrect 

movements. In [25], an on-screen “Wedge” visualization 

overlaid on top of the user’s body shows the plane and range 

of movement, joint positions and angles, and extent of 

movement.  

Most of the above guidance systems instruct the user on how 

to perform the task correctly by specifying the target body 

position and telling the user whether he/she has reached the 

target or not. However, we would like to develop a guidance 

system that is more adaptive and personalized for each task 

and also for each user. In the proposed system, guidance is 

provided based on criteria specially designed for each task by 

the physical therapist, instead of simply comparing the 

complete skeletons of the PT and user and showing the 

mismatched joints. Moreover, the proposed system can also 

decide whether the user needs to be guided according to the 

user’s performance and a satisfactory score set by the physical 

therapist, which avoids overwhelming instructions in training. 

 



III. MOTION DATA CONSTRUCTION AND DATA MISALIGNMENT 

PROBLEM 

In the proposed system, Kinect captures 25 joints with 3-D 

coordinates for each joint [26]. However, only some parts of 

these joints are deemed important for a specific task. In this 

section, we will introduce how to construct the motion data for 

a task and the motion data misalignment problem in the system. 

A. Motion Data Construction 

For a given task, the physical therapist defines several 

criteria and the tolerable error threshold for each criterion, 

which need to be translated into motion features. Motion 

features are quantities that are derived from the joint 

coordinates captured by Kinect, such as joint positions, joint 

angles, joint velocity, etc. For example, in the shoulder 

abduction task, arm height or shoulder angle (i.e., angle 

between the arm and the vertical direction) can be a motion 

feature which indicates whether the user raises the arm highly 

enough. Considering the difference in body size, we use 

normalized features, like angles, to build the motion data. The 

first three columns in Table I show the examples of some 

criteria defined by the physical therapist, the corresponding 

motion features, and the tolerable error threshold for a leg lift 

task. 

 
TABLE I 

EXAMPLES OF TASK CRITERIA AND MOTION FEATURES OF LEG LIFT TASK 

Criterion Motion Features 
Error 

Threshold 

Feature 

Type 

“Lift right leg to 

the required 

height” 

Angle between right leg 

and vertical direction: 

60⁰ 

±5⁰ 
Time-

varying 

“Keep right knee 

straight” 

Angle between right 

thigh and right shank: 

180⁰  

±10⁰ Constraint 

“Keep right leg in 

front of the body” 

Angle between right leg 

and the patient’s right 

direction: 90⁰  

±10⁰ Constraint 

 

Moreover, there are two types of features: time-varying 

features and constraint features. In a task, the patient is 

instructed to move some parts of his/her body, and keep some 

other parts stationary in the meantime. Time-varying features 

are features which represent the body’s movements in this task. 

Constraint features represent the other body parts which 

should be kept stationary during the task. The fourth column 

in Table I shows the corresponding feature type of each 

criterion in the leg lift task. 

For a given task, the physical therapist defines Nv time-

varying features and Nc constraint features. Time-varying 

motion data Fv for this task can be obtained by combining all 

the time-varying motion features of each frame. 
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where T is the number of frames, 𝑓𝑡,𝑖
𝑣  is the i-th time-varying 

feature in frame t. Similarly, constraint motion data Fc is 
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where 𝑓𝑡,𝑗
𝑐  is the j-th constraint feature in frame t.  

 

B. Motion Data Misalignment Problem 

Given the motion data of the PT and the user, we calculate 

the similarity of the two sequences to evaluate the 

performance of the user. However, comparing the two 

sequences directly is unreliable due to the potential data 

misalignment caused by delay. There are mainly two kinds of 

delay in the system: 1) human reaction delay, which means that 

it may take the user some time to react to the demonstration 

task before following it, 2) network delay, which results from 

the wireless network when transmitting the training video 

from the cloud to the user device. 

Human reaction delay and network delay cause two types 

of motion data misalignment problem: time shift and data 

distortion. In the rest of this section, we will discuss these two 

types of data misalignment problem, and discuss the problems 

the existing technique MCC [19] has in addressing the 

misalignment between the two sequences. 

 

1) Time Shift Delay 
When human reaction delay and network delay are uniform 

in a training task, there is only time shift between the PT’s and 

the user’s motion data. In this case MCC can be used to 

estimate the time shift and align the two sequences. For two 

discrete-time signals f and g, their cross correlation Rf,g(n) is 

defined by 
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and the time shift  of the two sequences is estimated as the 

position of maximum cross correlation 
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For those tasks including multiple separate gestures, the 

time shift might be different for these gestures and need to be 

calculated separately. Here we define a gesture as a 

subsequence that represents an independent subtask, e.g., one-

time shoulder abduction and adduction. Gestures in a training 

task are segmented manually by the physical therapist. Fig. 2 

shows a simple example of the PT and user’s motion data in a 

task of three gestures. For each gesture, the user follows the 



PT avatar to perform shoulder abduction and adduction. Fig. 

2(b) shows the angle between the left arm and the vertical 

direction as an example of the motion feature. Suppose that the 

user performs each gesture with delay τ1, τ2 and τ3 (τ1 ≠ τ2 ≠ τ3), 

they can be estimated using MCC and the two sequences can 

be aligned by shifting each gesture by the corresponding 

estimated delay. 

 

2) Motion Data Distortion 

In many cases, human reaction delay and network delay 

may not be uniform. The user may not be able to follow the 

task timely or perform some incorrect motion when the task is 

difficult for him/her. For example, when following a task of 2 

seconds, it takes a user 1s to react to the instructions and 

another 1s to complete the task since he realizes that he is 

behind. In this case the user’s reaction delay is not uniform 

(delay = 1s when t ≤ 1s, delay < 1s when 1s < t < 2s, and delay 

= 0 when t = 2s). Besides, the user’s valid motion sequence 

(1s) is shorter than the PT’s (2s), so shifting one sequence by 

the estimated delay cannot effectively align them. Network 

delay may also be not uniform due to many factors, such as 

varying bandwidth and network load. Although some response 

time management techniques have been developed [27], the 

network delay in cloud mobile applications cannot be 

eliminated. Therefore, under the influence of fluctuating 

network delay or when the user is following some difficult 

tasks, the user’s motion data might be distorted compared with 

the PT’s. Fig. 3 shows the motion data of the same task as Fig. 

2, but with both time shift delay and motion data distortion. In 

this case, using MCC to shift the user’s sequence by an 

estimated delay is unreliable. To calculate the similarity 

between the two sequences effectively, we need to find an 

optimal way to align them. 

 

 
Fig. 2. (a) Shoulder abduction and adduction. (b) Motion data (i.e., angle 

between left arm and the vertical direction) of the PT and user for three 

gestures with only time shift delay. Delay for each gesture is τ1, τ2, τ3. 

 

 
Fig. 3. Motion data (i.e., angle between left arm and vertical direction) of the 

PT and the user with both time shift delay and motion data distortion. 

IV. MOTION DATA ALIGNMENT AND USER PERFORMANCE 

EVALUATION 

To solve the data misalignment problem and evaluate the 

user’s performance correctly, we propose a DTW-based data 

alignment and evaluation method. Section IV-A introduces the 

principle of classical DTW and its use in the proposed system. 

Section IV-B proposes the GB-DTW-A algorithm which 

segments user gestures so that data alignment can be done in 

real time based on each gesture, and introduces the 

enhancements of GB-DTW-A compared with the original GB-

DTW0 algorithm [13]. In Section IV-C, we discuss how to 

evaluate the user’s performance according to the alignment 

results of GB-DTW-A. Finally, Section IV-D introduces visual 

and textual guidance in the proposed system and discusses 

how to provide effective guidance for the user.  

A. Dynamic Time Warping 

DTW is a dynamic programming algorithm that is widely 

used in speech processing [28]. It measures the similarity 

between two sequences A = {a1, a2, …, am} and B = {b1, b2, …, 

bn} by calculating their minimum distance. To calculate the 

minimum distance, an m×n distance matrix D is defined where 

D(i, j) is the Euclidean distance between ai and bj. 

 

 ( , ) i jD i j a b  .  (5) 

 

To find the best alignment between A and B, a continuous 

warping path through the distance matrix D should be found 

such that the sum of items on the path is minimized. Hence, 

this optimal path stands for the optimal mapping between A 

and B such that their distance is minimized. This path is 

defined as P = {p1, p2, …, pq} where max{m, n} ≤ q ≤ m + n − 

1 and pk = (xk, yk) indicates that axk
 is aligned with byk

. Moreover, 

this path is subject to the following constraints. 

• Boundary constraint: 1 (1,1)p   and ( , )qp m n . 

• Monotonic constraint:  1k kx x   and 1k ky y  . 

• Continuity constraint:  1 1k kx x   and 1 1k ky y   . 

To find the optimal path, an m×n accumulative distance 

matrix S is constructed where S(i, j) is the minimum 

accumulative distance from (1, 1) to (i, j). The accumulative 

distance matrix S can be represented as  
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and S(m, n) is defined as the DTW distance between  A and B  

[29]; smaller DTW distance indicates that the two sequences 

are more similar. The optimal warping path can be found by 

backtracking from (m, n) to (1, 1) and this path indicates the 

best way to align the two sequences. Time complexity of the 

DTW method is O(mn). Fig. 4(a) shows an example of two 

sequences A and B. The purple marked elements construct a 

path from (1, 1) to (m, n) on which the accumulative distance 



is minimized. It is the optimal warping path between A and B. 

Fig. 4(b) shows the corresponding alignment given by the 

optimal path in Fig. 4(a). For example, a1 is aligned with b1, a2 

and a3 are aligned with b2.  

 

 
Fig. 4. (a) Warping path of DTW on sequence A and B. (b) Alignment 

results between A and B. 
 

In the proposed system, DTW can be used to find out the 

optimal alignment between the PT’s and user’s movements. 

As mentioned in Section III-A, there are two types of motion 

data: time-varying motion data Fv and constraint motion data 

Fc. For time-varying motion data Fv, delay problems 

mentioned in Section III-B may cause the data to be 

misaligned with each other. Therefore, DTW can be applied to 

the PT’s and user’s time-varying motion data to find out an 

optimal warping path P = {p1, p2, …, pq}, where pk = (xk, yk) 

indicates that the user’s performance in frame yk matches PT’s 

movement in frame xk. Constraint motion data vs. time are 

horizontal lines (e.g., the knee angle vs. time is a horizontal 

line at 180 degrees for criterion “keep knee straight” in Table 

I and DTW cannot be used to align them. Constraint motion 

data are aligned using the DTW alignment results of time-

varying motion data. Consequently, based on the alignment 

results, the user’s performance can be evaluated by comparing 

his/her movements with the PT’s demonstration movements. 
 

B. Real-Time Gesture Segmentation Based on DTW 

Although DTW is an effective way to find out the optimal 

alignment between the PT and user’s motion sequences, it 

works only after the two motion sequences are obtained, that 

is, after the user finishes the entire task. In the proposed system, 

we would like to provide real-time evaluation for the user after 

he/she finishes each gesture, thus real-time gesture 

segmentation is needed during the user’s performance. There 

has been numerous research in the field of gesture 

segmentation, including methods based on machine learning, 

signal processing [30], [31], etc. In this work, since DTW can 

be used to align the motion sequences, we further propose a 

variant of DTW called GB-DTW-A so that gesture 

segmentation can be implemented in the process of DTW. We 

next present the details of GB-DTW-A.  

For a given task, gestures in the PT’s motion sequence have 

been pre-defined and segmented, which will be used as the 

ground truth to segment user’s gestures. Suppose that A1 = {a1, 

a2, …, am1
} is defined as the first gesture in the PT’s motion 

sequence A. Then we would like to use DTW to find a 

subsequence B1 = {b1, b2, …, bk} (2 ≤ k ≤ n) of the user’s 

motion data B that matches the PT’s gesture A1
 
best.  Since the 

DTW distance S(m1, k) represents the similarity between A1 

and B1, the optimal endpoint n1 
of the user’s gesture should be 

the position with the minimum DTW distance. 
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In [29], the Subsequence DTW algorithm searches the 

entire user sequence B to find out the global optimum n1. 

However, it works only after the user completes the entire task, 

which means that it is not real-time. Here we propose a new 

approach to estimate the global optimum by testing each local 

optimum. Firstly, we define a normalized distance function 

T(k)  = S(m1, k) ( ∑ 𝑎𝑖
m1

𝑖=1⁄ ) , where ∑ 𝑎𝑖
m1

𝑖=1   is the sum of PT’s 

motion data on this gesture. Then T(k)  can be used as a 

uniform similarity metric for different gestures. For a local 

optimum k*, we propose the following conditions to check 

whether it is the global optimum. 

Condition 1: k* is the current global optimum, i.e., 

T(k*) ≤ T(k) for any k < k*. 

Condition 2: The normalized distance between A1 and B1 is 

below a threshold, i.e., T(k*) < τ. 
Condition 1 is a necessary condition for the global optimum. 

If Condition 1 is not satisfied, we continue to search and check 

the next local optimum. In Condition 2, if the threshold is set 

strict (i.e., τ is low), it fails to consider the possibility of user’s 

poor performance even if the user has completed the gesture. 

If the threshold is set loose (i.e., τ is high), T(k*) < τ may be 

satisfied at some local optimums before the user completes the 

gesture. To solve this problem, we propose a dual-threshold 

strategy as follows. In Condition 2, a strict threshold τS is used. 

Therefore, Condition 2 is used to detect the global optimum 

when the user is following the PT accurately. If a local 

optimum satisfies both Condition 1 and Condition 2, it can be 

estimated as the global optimum. If only Condition 1 is 

satisfied and Condition 2 is not satisfied, we further use the 

following method to check whether k* may be the endpoint of 

the user’s gesture. If k* is the global optimum n1, B1 is the best 

match with A1. When the user completes one gesture, he/she 

may stay in the ending posture for several frames, so the 

following frames {bn1+1, bn1+2, …} will be quite close to bn1
. 

Based on the above observation, we propose the following 

empirical evidence. For the global optimum n1, all of its 

following r frames {bn1+1, bn1+2, …, bn1+r} tend to be aligned 

with am1
 in DTW. In other words, for frame n1+ j (j = 1, 2, …, 

r), (6) becomes 
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For the r frames following a local optimum k*, we calculate 

the DTW distances Strue = {S(m1, k*+1), S(m1, k*+2), …, S(m1, 

k*+r)}. In the meantime, we compute Sassumption = {S’(m1, k*+1), 



S’(m1, k*+2), …, S’(m1, k*+r)} using (8). The relative error 

between Strue and Sassumption is 

 

 . /assumption true trueerror S S S  .  (9) 

 

Then we propose Condition 3 to further test a local optimum 

k* in case Condition 2 is not satisfied.  

Condition 3: The relative error between Strue and Sassumption is 

below an error tolerance threshold δ, i.e., Mean(error) < δ. 

Besides, the normalized distance between A1 and B1 is below a 

loose threshold τL, i.e., T(k*) < τL. 

Condition 3 is used to detect the global optimum for the 

user’s poor performance. When the user performs the task, the 

normalized distance T(k)  is calculated for each frame k. For 

any local optimum k*, it is estimated as the global optimum if 

it satisfies Condition 1 and 2. If Condition 2 is not satisfied, 

Condition 3 is further used to test it. 

However, it is still possible that a true global optimum n1 

does not meet Condition 2 or 3. If we continue searching the 

following frames after n1, T(k)  will keep increasing and we 

cannot obtain the correct segmentation result even until the 

end of the task. To stop the searching timely, we propose 

Condition 4 to decide whether the current frame k is behind 

the global optimum n1. 

Condition 4: T(k) > T(1)  and there exists k0 < k  such that 

T(k0) <  τM . 

In Condition 4, T(k0) < τM is used to exclude the situation 

where T(k) may be increasing for the first several frames. If 

frame k satisfies Condition 4, the search should be stopped and 

the current global optimum (i.e., the minimum point among 

T(1) ~ T(k) ) can be estimated as the global optimum. The 

pseudo-code for the proposed GB-DTW-A algorithm is shown 

in Fig. 5.  

Compared with GB-DTW0 proposed in [13], the new GB-

DTW-A algorithm achieves higher segmentation accuracy and 

less segmentation delay. In GB-DTW0, only Condition 3 is 

used to test local optimums. However, the single threshold δ is 

sensitive to the user’s performance. Fig. 6 shows an example 

where the task and motion feature are the same as Fig. 2. Fig. 

6(a) shows the motion sequence of a PT’s gesture, and Fig. 

6(b)(c) show the motion data of two users, where E1 and E2 are 

the endpoints of their gestures. User 1 follows the PT 

accurately, so the DTW distance between PT and user 1 is 

small. For the true gesture endpoint E1, the relative error in (9) 

may be high since Strue is small. In this case, the threshold δ 

should be higher to allow E1 to be detected as the global 

optimum. User 2 is performing poorly (not following PT 

accurately), so the DTW distance is large. Point A is a local 

optimum of the DTW distance, but not the gesture endpoint. 

For point A, the relative error in (9) may be small since Strue is 

large. To avoid mistakenly detecting A as the global optimum, 

δ should be set lower. Therefore, a uniform threshold δ for all 

users may result in segmentation errors. In contrast, the dual-

threshold strategy proposed in GB-DTW-A can be used for all 

types of user performance, and therefore reduce the 

segmentation errors. Besides, the segmentation delay (i.e., the 

delay between the true gesture endpoint and the time when the 

segmentation is completed) of GB-DTW0 is at least r frames 

since Condition 3 needs to check r frames following the 

gesture endpoint. In GB-DTW-A, Condition 1 and 2 can be 

checked in real time without any delay. Condition 3 is checked 

only if Condition 2 is not satisfied. Moreover, Condition 4 

provides a way to stop the searching in time when we miss the 

global optimum instead of searching to the end of the task 

(which is used by GB-DTW0). Thus GB-DTW-A also reduces 

the segmentation delay compared with GB-DTW0. Details 

about the comparison results between these two algorithms are 

provided in Section V-B.  

 

Algorithm Gesture-Based Dynamic Time Warping (GB-DTW-A) 

Input: PT’s gesture A1, user’s motion sequence B = {b1, b2, …, 

bn} 

Output: Endpoint of user’s gesture  

Initialization: curMin = Inf, curMinIndex = -1, flag = false 

1. for each frame k in sequence B 

2. if k is a local minimum and T(k) < curMin 

3. if T(k) < τS 

4. return k 

5. else 

6. calculate Strue and Sassumption 

7. . /
assumption true true

error S S S   

8. if Mean(error) < δ and T(k) < τL 

9. return k 

10. end if 

11. end if 

12. end if 

13. if T(k) > T(1) and curMinIndex > 0 and flag == true 

14. return curMinIndex 

15. end if 

16. if T(k) < curMin 

17. curMin = T(k) and curMinIndex = k 

18. end if 

19. if flag == false and T(k) < τM 

20. flag = true 

21. end if 

22. end for 

23. return curMinIndex 
Fig. 5. Psuedo-code of GB-DTW-A algorithm. 

 

 
Fig. 6. (a) PT’s motion sequence. (b) User 1’s motion sequence with 

accurate performance. (c) User 2’s motion sequence with poor performance. 

A is a local optimum of the DTW distance. 

 

Using the above approach, gesture segmentation is 

implemented in the process of DTW. If B1 = {b1, b2, …, bn1
} is 

determined as the user’s gesture related to the PT’s gesture A1, 

DTW can be conducted from the new starting point (m1 + 1, n1 

+ 1). Fig. 7 shows the example of applying GB-DTW-A on the 

same sequences as Fig. 4. Suppose that there are four gestures 

in the task, segmentation allows DTW to be performed 



separately for each gesture. The shaded area is indicative of 

the computation cost for each gesture.  

For each gesture, Condition 1 and 2 can be checked on each 

local optimum in constant time. For a task with g gestures, 

each PT’s gesture contains m/g frames and each user’s gesture 

contains n/g frames on average. The complexity of GB-DTW-

A on each gesture is O(mn/g2). For Condition 3, r more frames 

following the local optimum need to be tested. The extra 

complexity to test local optimum is O(mr/g). So the average 

complexity of GB-DTW-A is 
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When the number of gestures g in the sequence is large, the 

proposed GB-DTW-A algorithm can significantly decrease the 

computation complexity compared to classical DTW on the 

entire sequence. If real-time detection fails, which means that 

the true global optimum does not meet Condition 2 or 3, 

Condition 4 is used to break the search and output the correct 

segmentation result, although with some delay. In this case, 

the computation complexity increases. If the segmentation is 

delayed to the end of the entire task in the worst case, the 

complexity becomes O(mn). However, it is shown in Section 

V-B that this worst situation happens very rarely. In most cases, 

the segmentation delay is low and the complexity is close to 

O(mn/g). 

 

 
Fig. 7. Average computation complexity of GB-DTW-A in a task of four 

gestures. 
 

C. GB-DTW-A Based User Performance Evaluation 

In this section, we will discuss how GB-DTW-A can be 

applied to evaluate the user’s performance. As discussed in the 

last section, GB-DTW-A aligns motion sequences as soon as 

the user completes a gesture, instead of waiting until the entire 

task is over, with much less complexity compared with 

classical DTW. Then based on the alignment results, we can 

check the user’s error on each criterion by comparing his/her 

motion data with the matched PT’s motion data, and calculate 

an overall evaluation score for his/her performance on the 

previous gesture. 

 

1) GB-DTW-A Based User Error for Each Criterion 

For each criterion in a task (see examples in Table I), we 

denote A = {a1, a2, …, am} as the PT’s motion data and B = {b1, 

b2, …, bn} as the user’s motion data. An optimal path P = {p1, 

p2, …, pq} which indicates the optimal alignment between A 

and B has been calculated by applying GB-DTW on the time-

varying motion data. 

To measure the user’s error, first we need to discuss 

different alignment types in P. We define the monotonicity of 

a subsequence A* = {ai, ai+1, …, ai+w-1} as follows. If all the 

elements in A* are monotonic (i.e. keep increasing or 

decreasing) then A* is monotonic, otherwise it is non-

monotonic. When multiple PT frames A* = {ai, ai+1, …, ai+w-1} 

are aligned with one single user frame bj, there are two 

different cases. (a) If A* is monotonic, it means that the effects 

of multiple frames in A* are similar to the effect of bj, which 

indicates that the user moved faster than the PT at that time. 

(b) If A* is non-monotonic, it means that some back and forth 

PT movements are simplified as one single frame bj in the 

user’s performance, thus the user’s movement is incomplete 

for this back and forth motion. Similarly, if one single PT 

frame is aligned with multiple user frames, we can judge 

whether the user is slower or overdoes the movement. (Note 

that the cause for the user to be slow might also be due to 

receiving the training video delayed due to the wireless 

network, that is, effect of network delay.) Table II and Fig. 8 

illustrates the five alignment types in DTW. For example, in 

type 1 the user performs faster than the PT so monotonic PT 

subsequence {a3, a4} is aligned with one single user frame b4. 

In type 4 the user’s movement does not reach the required 

amplitude, so non-monotonic PT subsequence {a17, a18, a19} is 

aligned with one single user frame b21. Type 5 represents the 

basic case where one PT frame is aligned with one user frame. 

 
TABLE II 

FIVE ALIGNMENT TYPES IN DTW  

Type 
Number of frames Monotonicity 

of subsequence 

User’s 

performance PT User 

1 >1 1 
Monotonic 

Too Fast 

2 1 >1 Too Slow 

3 1 >1 
Non-Monotonic 

Overdone 

4 >1 1 Incomplete 

5 1 1  Matches PT 

 

 
Fig. 8. Five alignment types in DTW: 1) The user moves faster. 2) The user 

moves slowly. 3) User’s overdone motion. 4) User’s incomplete motion. 5) 

Basic case where one PT frame is aligned with one user frame. 
 



Next, the PT’s motion data are considered as the ground 

truth and the user’s error can be calculated by comparing each 

PT frame and the aligned user frame/frames. If there is only 

one single user frame bj aligned with the PT frame ai (i.e., type 

5), the user’s error in this frame can be computed as 

 

 frame i je a b  .  (11) 

 

However, if PT frame ai is aligned with multiple user frames 

B* = {bj, bj+1, …, bj+w-1}, the difference between the two 

sequences will be counted several times according to (11). In 

this case we should revise (11) to count in the user error for 

only once based on the alignment types in Table II and Fig. 8. 

If B* is monotonic (i.e., type 2), the user performs slower than 

the PT. For most physical therapy tasks, user’s speed is not 

important. (Tasks for which speed is important are not 

discussed in this paper.) Only the average user error should be 

counted, and (11) can be revised as 
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If B* is non-monotonic (i.e., type 3) which represents the 

user’s overdone movements, the largest user error needs to be 

counted, and (11) can be revised as 
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For type 1 and 4 where multiple PT frames are aligned with 

one single user frame, user’s error will be calculated separately 

for each PT frame according to (11). Based on the discussion 

above, the user’s overall error on this criterion can be obtained 

by averaging the user’s error for each PT frame. 

 

2) Overall Score Estimation 

In the previous section, we discussed how to calculate the 

user’s error on each criterion. Combining them into a vector 

we can get the user’s error vector e for the task. In this section, 

we will introduce how to transform the error vector e into a 

normalized overall score that indicates the user’s overall 

performance for this task.  

To obtain the score estimation model, a subjective study is 

needed where the proposed system calculates the error vector 

e and the physical therapist gives a true score s for each subject.  

Given the error vectors {e1, e2, …, ei, …, eN} and the 

corresponding scores {s1, s2…, si, …, sN} (si  [0, 10]) for N 

samples, our goal is to find an optimal function h(e) so that 

𝑠𝑖 ≈ ℎ(𝑒𝑖). Here we choose h to be linear and include constant 

1 in ei as the bias term. Thus h can be represented as 

 

 ( ) Th e e .  (14) 

 

We use linear regression [32] to estimate the optimal 𝛽∗ as 
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where 
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From (15) the optimal parameter 𝛽∗ can be calculated from 

all the scores given by the physical therapist and error vectors 

in the training set. Then this optimal function h(e) can be used 

to estimate the overall score for any new user performance. 

 

D. Real-Time Guidance and Satisfactory Score 

In order to help the user improve performance accuracy, we 

propose a replay system which highlights the user’s error and 

provides visual and textual guidance for the user. Fig. 9 shows 

a screenshot of the guidance system for the leg lift task. The 

overall score for the user’s performance is shown on the upper 

left corner of the screen. Two avatars replay two views of the 

user’s movements, with the view angles determined by the 

task to better show the user’s error. In Fig. 9, the left avatar 

shows the side view and the right avatar shows the mirrored 

view. For each gesture, the user’s motion data on each criterion 

are compared with the corresponding PT’s motion data. If the 

user’s error on a criterion is above the error threshold defined 

by the physical therapist (see Table I), the guidance video will 

be slowed down, and visual/textual guidance is provided for 

the user to calibrate his/her movements.  

 

 
Fig. 9. Examples of textual and visual guidance in the leg lift task. Left 

avatar: side view. Right Avatar: mirrored view. User’s incorrect body parts: 
red. Corrected position: green. Textual information is placed beside the body. 

 

Visual guidance uses colored cylinders to label the user’s 

incorrect body positions and the correct positions. Incorrect 

body positions are rendered in red and the corrected positions 

are rendered in green so user can see the clear difference. In 

addition, directional arrows rendered in yellow will give 

further guidance on how to correct this movement. Textual 

guidance is provided beside the corresponding body parts to 

instruct the user. There are two types of textual guidance: 

qualitative and quantitative textual guidance. Qualitative 

textual guidance gives only general instructions on how to 

calibrate incorrect motion (e.g., “bring your right leg higher”), 

while quantitative textual guidance provides detailed 

instructions on the quantitative error (e.g., “bring your right 

leg higher by 20 degrees”). Quantitative guidance is important 

for the user to make right calibrations and avoid over 



corrections. However, when textual guidance is provided 

together with visual guidance, qualitative textual guidance 

may be sufficient since visual guidance already gives the user 

intuitive instructions about the quantitative error. To determine 

which kind of guidance is most helpful for the user, we have 

conducted subjective tests, whose results are shown in Section 

V-D. 

In addition, there are multiple choices for the timing of 

providing guidance. For example, 1) concurrent guidance 

when the user is learning the task, or 2) knowledge of result, 

i.e., guidance after the user has done the whole training task, 

and 3) post-gesture guidance after the user finishes each 

gesture. Concurrent guidance is hard to achieve since the data 

alignment approach cannot be applied in hard real time. 

Besides, concurrent guidance may be overwhelming for the 

user. Too many instructions in training may cause user’s 

failure in following the task. Guidance after the entire task is 

not real-time and cannot provide timely guidance for the user. 

Besides, for some tasks that include multiple different gestures 

and last several minutes, the user may have forgotten his/her 

performance on the first few gestures, which may cause the 

guidance to be ineffective. Post-gesture guidance can be 

considered soft real-time and can make it easier for the user to 

utilize the guidance. Moreover, post-gesture guidance can be 

fully personalized depending on the user’s performance. For 

good user performance, no guidance is needed and the user can 

continue his/her training. When the user makes some errors in 

a gesture, he/she will receive timely guidance after this gesture. 

Hence, we believe that post-gesture guidance is the most 

helpful in the proposed system. Real-time gesture 

segmentation has been achieved by the proposed GB-DTW-A 

algorithm. To determine whether to provide guidance or 

continue training, a satisfactory score is set by the physical 

therapist (which will be discussed in Section V). Scores above 

the satisfactory score means that the user passes the gesture 

and can progress to the next gesture. Otherwise, the system 

will pause the training and provide guidance for this gesture. 

 

V. EXPERIMENTAL RESULTS 

We conducted experiments based on the testbed (shown in 

Fig. 10) we have developed to emulate the system architecture 

in Fig. 1. The cloud server is running on a desktop with a quad 

core 3.1GHz CPU and 8GB RAM, and the user device is a 

laptop PC with a dual core 2.5GHz CPU and 4GB RAM. The 

network connection between the cloud server and the mobile 

laptop is emulated using a network emulator (Linktropy [33]), 

which can be programmed to emulate different wireless 

network profiles. All the experiments were conducted with the 

assistance of a licensed physical therapist who specializes in 

movement disorder population with a background in 

orthopedics and fitness. 

 

 
Fig. 10. Experiment testbed. 

 

A. Experiments to Validate Data Alignment Approach 

To validate the proposed data alignment and gesture 

segmentation approach, the tested task is shoulder abduction 

and adduction (shown in Fig. 2(a), criteria and motion features 

are shown in Table III) with different target heights for five 

times. The PT’s motion data for the five gestures are shown as 

the blue curve in Fig. 11. Only the left shoulder angle is shown 

here for simplicity. 

 

 
Fig. 11. PT's motion data (i.e., left shoulder angle) and the bandwidth 

profile. 

 

Four users (User A, B, C and D) with different motion 

abilities were invited as subjects in the experiment. They tried 

to follow the PT’s movements by watching the training video 

which was transmitted through the network emulator to the 

laptop. Each user was tested under ideal network condition 

(without any bandwidth constraint) and non-ideal network 

condition (limited by a bandwidth profile to simulate the 

downlink network). The bandwidth profile is shown as the 

black solid curve in Fig. 11 and it was repeated for each user 

using the network emulator. It can be observed that the 

bandwidth is relatively lower at the third and fourth gestures. 

Then we use three different techniques: 1) tradition method of 

MCC, 2) classical DTW on the entire motion sequences, and 

3) GB-DTW-A, to align the motion sequences of the PT and 

the user. For the GB-DTW-A algorithm, the double thresholds 

{τS, τL} are set as {0.1, 0.5} and τM = 0.5, r = 20, δ = 5%. The 

alignment results of user A are shown in Fig. 12. In each figure, 

we plot the motion data of the PT and the user, with the x-axis 

showing the frame number and the y-axis showing the tested 

shoulder angle. The vertical dashed lines in GB-DTW-A show 

the gesture segmentation results. In the two DTW algorithms, 

when multiple frames in one sequence are aligned with one 

single frame in the other sequence, the single frame is repeated



TABLE III 

MOTION FEATURES AND CRITERIA OF SHOULDER ABDUCTION AND ADDUCTION, LEG LIFT AND JUMPING JACK 

Task Feature Type Criteria Feature 

Shoulder 

abduction 

and 

adduction 

Time-varying 

(Nv = 1) 

“Raise the arm to the required 

height” 
Angle between the arm and the vertical direction: set by the PT (e.g., 90⁰) 

Constraint 

(Nc = 1) 
“Keep the elbow straight” Angle between the upper arm and lower arm: 180⁰ 

Leg lift 

(right) 

Time-varying 

(Nv = 1) 

“Lift right leg to the required 

height” 

Angle between the right leg and the vertical direction: set by the PT (e.g., 

60⁰) 

Constraint 

(Nc = 4) 

“Keep the trunk upright” Angle between the trunk and the vertical direction: 0⁰ 

“Keep pelvis level” Angle between the pelvis and the horizontal direction: 0⁰ 

“Knee right knee straight” Angle between the right thigh and shank: 180⁰ 

“Keep right leg in front of the 

body” 
Angle between the right leg and the patient’s right direction: 90⁰ 

Jumping 

jack 

Time-varying 

(Nv = 2) 

“Raise left arm beyond the head” Angle between left arm and the vertical direction: 120⁰ 

“Raise right arm beyond the head” Angle between right arm and the vertical direction: 120⁰ 

Constraint 

(Nc = 5) 

“Keep left and right arm 

symmetrical” 
Difference between the two time-varying features: 0⁰ 

“Keep left arm aligned with the 

trunk” 
Angle between the left arm and the body plane: 0⁰ 

“Keep right arm aligned with the 

trunk” 
Angle between the right arm and the body plane: 0⁰ 

“Keep left elbow straight” Angle between the left upper arm and lower arm: 180⁰ 

“Keep right elbow straight” Angle between the right upper arm and lower arm: 180⁰ 

 

 
Fig. 12. Data alignment results for User A under ideal and non-ideal network conditions. (1) Original misaligned motion sequences of the PT and the user. (2) 

Aligned sequences using MCC. (3) Aligned sequences using classical DTW on the entire sequence. (4) Aligned sequences using GB-DTW-A and gesture 

segmentation. 



for several times to show the alignment results. From Fig. 12 

we can see that the user performs worse with fluctuating 

bandwidth than ideal network condition due to the network 

delay. Especially at the third and fourth gestures when 

bandwidth is limited, he/she cannot follow the PT and 

performs more slowly. To quantify the alignment results, we 

calculate the correlation coefficient ρ of the aligned sequences 

x and y in each method as 
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where  are the means of x, y and σx
2, σy

2 are the variances. 

High correlation coefficient indicates that the two sequences 

are aligned better. The correlation coefficients for each user 

using different methods are shown in Table IV. Comparing the 

three methods, it can be concluded that when the user follows 

the PT quite well and there is only time shift delay, the 

traditional method of MCC gives high correlation coefficients 

(ρ > 0.85). However, when the network condition is not ideal 

and therefore the training video is delayed, or when the user 

cannot follow the PT due to his/her motion ability, the user’s 

motion data are distorted. In this case the two DTW algorithms 

perform much better (ρ > 0.95) than MCC (ρ < 0.80). For 

DTW and GB-DTW-A, their alignment results are quite close 

and both of their correlation coefficients are more than 0.95. 

Fig. 13 shows the running time of DTW and GB-DTW-A on 

the four users under ideal and non-ideal network conditions. 

We can see that GB-DTW-A needs significantly less time 

compared with DTW to align the two sequences, which 

validates our deduction in (10). Therefore, the proposed GB-

DTW-A outperforms other alignment methods as well as 

enable real-time guidance with reduced computation 

complexity.  
 

TABLE IV 

CORRELATION COEFFICIENTS FOR USER A, B, C, AND D USING DIFFERENT 

ALIGNMENT METHODS UNDER IDEAL AND NON-IDEAL NETWORK CONDITIONS 

User 
Network 

Condition 
Original MCC DTW 

GB-
DTW-A 

A 
Ideal 0.7793 0.9358 0.9738 0.9747 

Non-Ideal 0.4575 0.7566 0.9868 0.9841 

B 
Ideal 0.7824 0.9578 0.9741 0.9753 

Non-Ideal 0.4726 0.6104 0.9811 0.9827 

C 
Ideal 0.6388 0.8766 0.9654 0.9649 

Non-Ideal 0.1036 0.6351 0.9888 0.9729 

D 
Ideal 0.6190 0.9302 0.9752 0.9761 

Non-Ideal -0.0944 0.7115 0.9851 0.9851 

 

 

 
Fig. 13. Running time of DTW and GB-DTW-A under ideal and non-

ideal network conditions. 

B. Experiments to Compare GB-DTW0 and GB-DTW-A 

Wireless networks can be associated with significant jitter 

(variations in network delay). Jitter can exacerbate the motion 

data misalignment problem due to network delay, and 

challenge the performance of the data alignment and 

segmentation algorithms GB-DTW0 [13] and GB-DTW-A. 

Hence, we conduct experiments to compare the performance 

of the two algorithms in the presence of jitter. We emulate the 

condition where the user follows the PT accurately, but his/her 

motion sequence is affected by jitter. By using this “perfect” 

user, the motion data misalignment is completely caused by 

jitter. Therefore, the effectiveness of the two algorithms can be 

tested by checking whether they can achieve “perfect” 

alignment result (correlation coefficient close to 1). In our 

experiments, the motion sequence of the “perfect” user is 

created by delaying each frame of the original PT’s motion 

sequence shown in Fig. 11 by ∆t. (Frames are not reordered 

even if subjected to differing delays.) ∆t  follows a positive 

truncated normal distribution (i.e., ∆t  ~ |N(0, σ2)| ), and the 

mean of ∆t is 
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𝜇∆𝑡 is proportional to the standard deviation σ. Larger 𝜇∆𝑡 

represents higher delay and jitter in the wireless network. In 

the experiments, 𝜇∆𝑡 ranges from 0s to 8s. For each value of  
𝜇∆𝑡, experiments are repeated for ten times and the average is 

calculated. For GB-DTW0 and GB-DTW-A, we calculate the 

following four indexes.  

Correlation Coefficient (CC): see (17). 

User Error (UE): user’s average error in each frame. In the 

shoulder abduction and adduction task, user error is in degrees 

since the motion feature is the shoulder angle.  

Segmentation Error (SE): error between the detected 

endpoint and the true endpoint of the user’s gesture.  

Segmentation Delay (SD): delay between the true endpoint 

of the user’s gesture and the time when the segmentation is 

completed.  

Results are shown in Fig. 14, with the x-axis showing 𝜇∆𝑡 

and y-axis showing CC, UE, SE, and SD in the four sub-

figures respectively. Since each user motion sequence contains 

only network delay, the user’s performance can be considered 

“perfect” and thus CC should be close to 1 and UE should be 

close to 0. Smaller SE indicates more accurate segmentation 

and smaller SD means more real-time segmentation. From Fig. 

14 it can be concluded that, when the jitter is low (i.e., 𝜇∆𝑡 < 

2s), both GB-DTW0 and GB-DTW-A achieve good 

segmentation and alignment results. Note that the SD result of 

GB-DTW0 is always larger than 20 frames because Condition 

3 is always used to check r frames following the gesture 

endpoint. When jitter is higher (i.e., 𝜇∆𝑡  > 4s), GB-DTW-A 

shows superiority over GB-DTW0, especially in maintaining 

low SE and SD. The average number of CC, UE, SE, and SD 

for GB-DTW0 and GB-DTW-A are shown in Table V. We can 

x , y



observe significant improvements achieved by the new 

algorithm GB-DTW-A compared to GB-DTW0 [13], 

especially in reducing estimation of user error (lower UE), 

enhancing segmentation accuracy (lower SE), and making 

segmentation real-time (lower SD). Note that the segmentation 

delay (SD) achieved by the new algorithm GB-DTW-A is only 

11 frames on average, compared to an average of 39 frames 

for GB-DTW0, and never higher than 40 frames. The low SD 

numbers achieved by GB-DTW-A validates that the 

computation complexity of GB-DTW-A is close to O(mn/g) in 

most cases, and since it never has to search till the end of the 

user sequence, it shows that it never reaches the worst-case 

computation complexity of O(mn) (section IV-B).  

 

 
Fig. 14. Comparison between GB-DTW0 and GB-DTW-A. The four sub-

figures show results of correlation coefficient (CC), user error (UE), 
segmentation error (SE), and segmentation delay (SD). 

 
TABLE V 

AVERAGE IMPROVEMENTS OF GB-DTW-A COMPARED TO GB-DTW0 

 CC UE (degree) SE (frame) SD (frame) 

GB-DTW0 0.97 0.78 21 39 

GB-DTW-A 0.98 0.38 10 11 

Improvement 0.95% 50.1% 54.1% 71.2% 

 

C. Experiments to Estimate Overall User Score 

As discussed in Section IV-C, the optimal function h(e) for 

each task can be estimated by applying linear regression on 

training samples. In this experiment, the tested tasks are leg 

lift and jumping jack which are shown in Fig. 15. Motion 

features and criteria for each task are shown in Table III. 

 

 
Fig. 15. (a) Leg lift. (b) Jumping jack. 

 

In the experiment 10 subjects (aged 18~30, 6 males, 4 

females) used the proposed training system to perform leg lift 

and jumping jack for several times. For each performance of 

each subject, the physical therapist gave an evaluation score s 

[0,10]. In the meantime, the proposed training system 

captured the subject’s movements, processed the motion data 

and calculated an error vector e. 60 samples were gathered for 

each task. 

All the samples are randomly divided into a training set 

(including 42 samples) and a test set (including 18 samples). 

For the training set, Equation (15) is used to train the samples 

and calculate h(e). Then we apply the optimal function h(e) on 

the test set. The results are shown in Fig. 16, with the x-axis 

showing the real score sPT given by the physical therapist and 

the y-axis showing the estimated score sestimated using h(e). The 

mean absolute error (MAE) between sPT and sestimated is 

calculated and shown in Fig. 16. Samples on the diagonal line 

sPT = sestimated means that the estimated score is the same as the 

real score without any error. The two dotted lines sPT = sestimated 

± 1 define the diagonal area for which the estimation error is 

below 1. (We choose 1 as the error threshold since most scores 

given by the physical therapist are integers, for which 1 is the 

minimum error.) We can see that most of the test samples lie 

in the diagonal area, which means that the evaluation models 

are accurate. Besides, using h(e) to evaluate the patients is 

superior because the intra-rater reliability [34] of a human 

performing movement analysis without any analytical tools 

besides eye site shows increased variability. By utilizing the 

system to analyze the movements there is a more uniform 

scoring and increased intra-rater reliability.  

 
Fig. 16. Estimated score vs. PT real score and the mean absolute error 

(MAE) for (a) leg lift and (b) jumping jack. 

 

D. Effectiveness of Visual and Textual Guidance 

As discussed in Section IV-D, visual and textual guidance 

can be provided after each gesture according to the user’s 

performance. The satisfactory score is set as 7 by the physical 

therapist in order to allow for some intrinsic error correction, 

which would allow for increased learning of the task. If the 

threshold is set too low, the patients would obtain a passing 

score too easily and not have the correct amount of feedback 

to properly correct the deficits in his/her movements. If the 

score is set too high, it might discourage the patients from 

trying their best and create a negative mindset, resulting in a 

reduction in retention.  



To validate the effectiveness of the guidance system, we 

conducted another subjective test to compare four types of 

guidance: 1) no guidance (N), 2) visual guidance (V), 3) 

quantitative textual guidance (T), 4) visual and qualitative 

textual guidance (VT). There are two alternative ways to 

design the subjective test. The first one is having each user try 

four different tasks with equal difficulty level, with each task 

associated with one type of guidance. The four tasks should be 

completely different, otherwise the user’s ability may improve 

after he/she tries one task which will impact his/her 

performance of the next task and hence our evaluation of the 

effectiveness of the associated guidance. The other way is 

dividing all the subjects into four groups, with equal average 

ability in each group. People in different groups practice the 

same task but are provided with different types of guidance. 

After consultation with the physical therapist and multiple 

attempts of data capture, it was not clear if it is possible to have 

tasks which are significantly different from each other and yet 

have same quantifiable difficulty level, because of the tracking 

insufficiency of the Kinect sensor for some tasks (e.g., use of 

wheelchairs, occlusion problem). Hence we considered the 

first method to be not feasible, and instead decided to use the 

second method.   

In the test, 28 subjects (aged 17 ~ 38, 14 males, 14 females) 

were invited to perform two training tasks (leg lift and jumping 

jack) using the proposed system. To ensure the same initial 

average score of each group, groups were assigned after the 

first attempt of each subject. Each subject performed each task 

four times and the average score of each group is calculated. 

Fig. 17 shows the average performance and 90% confidence 

intervals (black vertical lines) of each group, with each group 

represented by a different color. The red dotted curve shows 

the satisfactory score. 

 

 
 

 
Fig. 17. Average score of each group with vertical lines showing 90% 

confidence interval. (a) Leg lift. (b) Jumping jack. 

 

From Fig. 17 we can see that the average scores on the first 

attempt in each group are similar, which ensures similar initial 

ability of each group. We also make the following important 

conclusions from the results. While scores for people in group 

N (without any kind of guidance) fluctuates with large 

confidence intervals, and may or may not reach the 

satisfactory score, using each type of real-time guidance helps 

the users improve performance, though with varying 

effectiveness. People in group V (who get visual guidance) and 

group T (who get quantitative textual guidance) reach the 

satisfactory score 7 after the fourth attempt. On the other hand, 

the results show that the combination of visual and textual 

guidance is the most helpful: it helps users in group VT reach 

score 7 after only the second attempt. 

 

E. Performance Validation Using Real Cloud Environment 

To validate the performance of the proposed system on a real 

cloud environment, we implemented the system on Amazon 

Web Services (AWS) [35]. The experiment setup is the same 

as Fig. 10 except that the desktop and network emulator are 

replaced by AWS (and the real network from AWS to the user 

device). Specifically, we use AWS g2.2xlarge instance which 

provides access to one NVIDIA GRID GPU with 1,536 CUDA 

cores and 4GB of video memory. The CPU it provides is Intel 

XeonE5–2670 @2.60GHz with 15GB memory. The operating 

system we deploy is Windows_Server-2008-R2_SP1. 

One of the concerns of having the system run on a real cloud 

environment is the possible impact of additional delay from 

the cloud to the user device. We tested the delay of the training 

and guidance videos under three different network conditions: 

1) unloaded network (e.g., accessing our cloud-based system 

using home Wifi at midnight), 2) loaded network (e.g., 

accessing our cloud-based system using LTE network at 5pm), 

3) loaded and noisy network (e.g., accessing our cloud-based 

system using public Wifi at 5pm). The histograms of the 

measured delay under each condition are shown in Fig. 18, 

with the x-axis showing the delay and the y-axis showing the 

frequency of each value (i.e., number of occurrences of the 

value). 

 

 

Fig. 18. Histogram of the measured delay of avatar video from cloud 
(AWS) to user device under unloaded, loaded, and loaded and noisy network 

conditions. 

 

The mean and Standard Deviation (STD) of the measured 

delay are shown in Table VI. When the network is unloaded, 

the delay is under 30ms most of the time. When the network 

is loaded and noisy, the delay is increased significantly but still



 
Fig. 19. Data alignment results for User 1, 2, 3 using AWS. (1) Original misaligned motion sequences of the PT and the user. (2) Aligned sequences using GB-

DTW-A and gesture segmentation. 

 

under 100ms, which means that the video streaming from the 

cloud to the user’s mobile device can be considered real-time 

in the system. Furthermore, we invited three new users to 

perform the shoulder abduction and adduction task using the 

proposed training system. The motion data alignment 

algorithm (i.e., GB-DTW, see Section IV-B) and the user 

performance evaluation algorithm (see Section IV-C) are 

implemented on AWS. Fig. 19 shows the motion data 

alignment results. We can see that the proposed GB-DTW 

algorithm still works well in aligning motion data and 

segmenting gestures in the real cloud environment. Table VII 

shows the running time of the alignment and evaluation 

algorithms on AWS. The running time of the two algorithms 

are under 20ms, again demonstrating their real-time nature. 

From all the above results, it can be concluded that the 

proposed system is able to provide real-time training and 

guidance for the user in a real cloud environment. 

 

TABLE VI 

MEAN AND STD OF DELAY FROM CLOUD TO USER DEVICE UNDER 

UNLOADED, LOADED, LOADED AND NOISY NETWORK CONDITIONS 

 Unloaded Loaded Loaded and noisy 

Mean (ms) 28.09 46.90 60.72 

STD (ms) 11.85 11.19 20.99 

 

TABLE VII 

RUNNING TIME OF GB-DTW-A AND USER PERFORMANCE EVALUATION 

ALGORITHMS IN CLOUD (AWS) 

Algorithm User 1 User 2 User 3 

GB-DTW-A (ms) 16.87 14.91 14.90 

User performance evaluation (ms) 0.35 0.29 0.38 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a cloud-based physical therapy 

monitoring and guidance system that captures and evaluates 

the user’s performance automatically. It can also be applied to 

many other types of training applications, such as wellness and 

fitness training, and ergonomics training. To address the 

motion data misalignment problem as well as enable real-time 

evaluation, we propose the GB-DTW-A algorithm to align the 

motion data and segment the user’s motion sequence into 

gestures in real time with reduced computation complexity. 

Experiments with multiple subjects using real network profiles 

show that the proposed method works better than other 

alignment techniques. Moreover, we provide results to 

demonstrate the accuracy and real-time performance of the 

proposed GB-DTW-A algorithm. Furthermore, the evaluation 

model for the user’s performance is trained based on 

subjective test and linear regression method. Testing results 

show that the evaluation model is able to provide an accurate 

score which is quite close to the real score given by the 

physical therapist for the user’s performance. Besides, the 

proposed guidance system can provide detailed visual and 

textual guidance, whose effectiveness has been validated in 

subjective test. Experiments using real cloud environment 

AWS show that the proposed system can provide real-time 

training and guidance for the user. 

In the future, we may incorporate other kinds of sensors, 

like pressure sensors and epidermal sensors. Besides, Kinect 

can lead to inaccurate and unstable skeleton tracking, 

especially when tracking complex movements or patients with 

walkers and wheelchairs. Hence we would like to use multiple 

cameras or incorporate other motion capture sensors to 

improve the skeleton capture accuracy. Moreover, setting 

uniform criteria for different patients may cause injury or over 

corrections. Thus we would like to make the criteria of each 

task more adaptive and personalized for patients according to 

their health conditions. Furthermore, we will explore more 

about the design of guidance. Currently the proposed visual 

and textual guidance are proved useful for the user to improve 

performance, and the combination of visual and textual 

guidance is the most helpful. However, many other issues need 

to be considered to improve the effectiveness of guidance, e.g., 

are there other types of guidance which may be more effective 

for certain types of patients, what is the proper frequency to 

provide guidance, and how much guidance might be right as 

opposed to being overwhelming for the user. All of these 

issues need to be considered and explored in our future work.  
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