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Abstract—Vehicular networking has seen continued evolution
over decades with the recently emerging paradigm of Cellu-
lar Vehicle-to-Everything (C-V2X) communications beginning
to pick up momentum for adoption on today’s roadways. Ini-
tial iterations of C-V2X grew from the LTE Device-to-Device
framework and targeted application use cases that required the
exchange of small packets of information: where a vehicle is,
what it is doing, etc. Many of the next generation of use cases
require the transfer of sensory data from vehicles to the edge,
e.g., tele-driving, cooperative perception, computation offloading,
etc. This work evaluates whether today’s commercially available
vehicular networking solutions can support the higher data rates
required to carry this sensory data from vehicles to a Roadside
Unit using a C-V2X testbed based on C-V2X Mode 4, which
operates autonomously in shared spectrum. It is experimentally
shown that C-V2X is capable of carrying the most common
form of vehicle sensor data, images, with a frame latency of
approximately 50 ms; however, these transmissions are often
unreliable due to C-V2X Mode 4’s lack of adaptation capability.
To mitigate this, a Reinforcement Learning (RL) problem is
proposed that can adapt the transmission parameters of image
frames using readily available out of band information in order
to achieve a 23.3% relative improvement in effective throughput.
Extensions to this RL problem are developed that allow explicit
control over a desired risk tolerance, such as the probability of
transmitting an image but not receiving it. Using this extension,
the developed RL solution learns an adaptive transmission policy
that successfully delivers 87.1% of the image frames which
are transmitted (a 33.6% absolute improvement) while still
maintaining the throughput advantage. Ultimately this work
finds that today’s commercial vehicular networking solutions
are capable of supporting applications that require sensor data
sharing by using RL to overcome the limitations of C-V2X Mode
4.

Index Terms—C-V2X, Reinforcement Learning, Testbed, Wire-
less Communications

I. INTRODUCTION

Vehicle-to-Everything (V2X) technologies have continually
evolved over decades from Dedicated Short Range Communi-
cations (DSRC) to current Cellular V2X (C-V2X), which has
been shown to provide increased reliability over DSRC [2].
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The advent of V2X communications has enabled vehicles to
share their location and trajectories with other vehicles on the
road in the form of Cooperative Awareness Messages (CAMs)
[3] or Basic Safety Messages (BSMs) [4] - providing a path to
improved roadway safety and efficiency. While these messages
are relatively small, many next-generation use cases target
sensor data sharing, significantly increasing necessary data
rates. C-V2X initially grew from the LTE Device-to-Device
framework and utilizes the PC5 Sidelink interface. Operation
of these radios in Mode 4 [5] allows for distributed resource
selection by each vehicle using a sensing-based approach
without needing any aid from the network. The drawback of
this approach is that the technology is primarily targeted for
broadcast messages with no built-in link adaptation methodol-
ogy to enable reliable unicast transmissions - perfect for CAMs
and BSMs but not ideal for sensor sharing.

This work asks can today’s commercially available C-V2X
radios support sensor data sharing? The insights gained in
this work by exploring this question will undoubtedly carry
over to future generations of C-V2X [6], where inclusions
of re-transmission and channel state feedback protocols will
improve C-V2X unicast but do not fully capture the breadth
of adaptations explored in this work for real-time sharing
of sensor data. To study this, a C-V2X testbed is deployed
on the University of California, San Diego (UCSD) campus,
which consists of a standalone Road-Side Unit (RSU). It is
shown that C-V2X Mode 4 can support transmission of JPEG
compressed image frames from vehicle to the roadside edge
with a typical frame latency around 50 ms (depending on the
level of compression used). However, transmission reliability
remains challenging due to the larger message sizes inherent to
sensor data over smaller single-packet transmissions, as even
small-scale packet loss can be dramatically amplified. This
work shows that this reliability challenge can be overcome
through the utilization of Reinforcement Learning (RL) to
autonomously adapt the transmission of images from ve-
hicles using available out-of-band information (due to the
lack of feedback in C-V2X Mode 4). Moreover, State-of-
the-Art (SOTA) RL methodology is extended to allow for
explicitly setting a reliability constraint to force high Frame
Delivery Rates (FDRs) when transmission is attempted. This
methodology enables C-V2X Mode 4 to achieve a FDR of
87.1% while achieving an 11.8% higher goodput than a static
configuration of always transmitting high-quality images - C-
V2X Mode 4 can be used for reliable transmission of image
frames while maintaining high image quality. The proposed
RL methodology is developed and demonstrated with com-
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mercial C-V2X Hardware-in-the-Loop (HIL), showing that the
methodology is immediately applicable to today’s roadways.

A. Related Work

Millimeter Wave (mmWave) V2X. It can be tempting to
use wider spectrum, such as mmWave to support needed rates
for real-time transfer of high volume data. Indeed, multiple
works have proposed and studied mmWave V2X [7], [8] and
shown that one of the most difficult tasks, beam management
in mobility, could be overcome through the incorporation of
data driven techniques [9]–[12]. While these studies are surely
important for the long-term, mmWave is unlikely to see com-
mercial success for V2X in the near-term. This work focuses
on augmenting the version of C-V2X that is commercially
available today using the relatively narrow bandwidth of the
5.9GHz Intelligent Transportation Systems (ITS) band [13]
where prior studies have only been conducted in simulation
[14]–[16]. Although the capabilities of C-V2X will undeniably
be more limited than those of mmWave, this work is more
directly applicable to roadways today and therefore can help
the community iteratively evolve to the next generation of use
cases before mmWave V2X could become commonplace.

Application Specific Studies. Many prior works have
conducted algorithmic studies for specific applications that
would utilize vehicular sensor data. For instance, how to fuse
detections from multiple cameras [17]–[19] or lidars [20]–
[22]. Or how to partition computing tasks between vehicles,
edge, and cloud nodes [23], [24]. While these works provide
evidence of the utility of sharing vehicular sensor data, they
often ignore or abstract the V2X communications necessary to
support these applications; thus, as this work focuses primarily
on the optimization of the wireless transmission of sensor data,
it can be considered orthogonal to these algorithmic studies.
A likely fruitful research thrust would be an exploration that
jointly considers the application and the wireless transmis-
sions, e.g., [25] considers selective transmission of detected
roadway objects to conserve bandwidth using knowledge of
the contents of sensor data. Some other works [26], [27]
proposed vehicular task offloading to edge computing node
with communication scheduling and resource allocation, to
minimize the vehicular task delay. Ultimately, these areas are,
at present, understudied in realistic settings, and this work will
be complementary to these ongoing efforts.

Adaptive Bit Rate (ABR) Algorithms. Perhaps the closest
comparison to this work would be the numerous studies of
adaptive video streaming which seek to optimize the trade
space between video quality and the probability of rebuffering.
One key distinguishing factor of this work is that the C-
V2X Sidelinks utilized are only single-hop connections and
therefore have different characteristics than the multi-hop
connections more widely studied where network congestion
and queuing delays are primary concerns as opposed to this
work whose primary concern is the vehicular wireless link,
which changes rapidly and therefore conventional ABR algo-
rithms cannot adapt quickly enough. Further, ABR algorithms
typically use estimates of 1) throughput [28], [29], 2) buffer
status [30], or 3) both [31], [32], which are not available in this

work due to the blind broadcast nature of C-V2X Sidelinks and
real time nature of the sensor data sharing task. The closest
parallel in adaptive video transmission to this work is the study
of using physical layer metrics to inform video transmission
[33]. This work differs from that study in three ways. First, the
necessity of real-time image transmission; thus, there can be
no buffering of data and re-transmissions are likely to make the
transmission have excessive latency. Second, the air interfaces
used in this work are different, utilizing PC5 on Sidelink
instead of the typical Uu interface of cellular networks with a
proper Base Station. Third, instead of utilizing metrics from
the physical layer, which are unfortunately unavailable in C-
V2X Mode 4 due to the lack of feedback in the protocol, this
work utilizes out of band information to adapt transmissions.

B. Research Contributions & Paper Outline

This is the first work to experimentally explore the re-
purposing of today’s commercially available C-V2X radios
for the higher data rate transmissions of vehicular sensor data
sharing. Using image data as a use case study, this work
characterizes the latency and reliability of these transmissions
in a realistic setting. Further, a RL problem is proposed to
overcome the lack of adaptation capabilities in C-V2X Mode
4 which is shown to greatly improve the effective throughput
while satisfying a configurable reliability constraint for FDR
in the optimization problem. More specifically, the remainder
of this work is organized as follows. This work first describes
the system setup in Section II before presenting the principle
research contributions within Sections III, IV, and V:

1) Section III. Characterization of the performance of cur-
rently commercialized C-V2X radios for sharing image
data from vehicle to the roadside edge in a realistic
deployment scenario, through utilization of the UCSD
C-V2X testbed, in order to show that C-V2X Sidelinks
operating in Mode 4 can, in fact, support the transmission
of image frames with sub-100ms frame latency and high
reliability within some subsets of the roadway study area.

2) Section IV. Investigation of the utility of RL for aug-
menting the capabilities of C-V2X by adapting WAVE
Short Message Protocol (WSMP) Packet Size and JPEG
Quality Level according to the vehicle location and
recently observed background traffic as an estimate of
spectrum congestion; the optimization of the controlling
Agent is implemented as HIL training which showcases
the ability for life-long learning to adapt to new deploy-
ments and how RL methodologies can robustly apply to
noisy real world wireless environments.

3) Section V. Extension of SOTA RL methodologies to
allow network operators explicit control over Quality of
Service (QoS) constraints, such as FDR; this method-
ology is shown to automatically tune a multi-objective
reward function to balance risk (i.e. frame loss) with
reward (i.e. application goodput) and achieves a 23.3%
improvement in goodput when the FDR constraint is re-
laxed while still maintaining a 11.8% goodput advantage
when targeting a 90% FDR. This shows that transmis-
sions over C-V2X Mode 4 can not only be optimized
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Fig. 1: Model of sharing vehicular sensor data to an RSU; this work is only
concerned with Step 1, or the sharing of sensor data over C-V2X Sidelinks.

for goodput, but are capable of achieving highly reliable
image transmissions while doing so.

The paper then concludes with ablation studies in Section VI
and a summary of findings in Section VII.

II. BACKGROUND

This section begins with a discussion of the system setup for
this work. It then describes the prototype testbed of that system
on the UCSD campus that enables the studies performed and,
finally, a short description of how image transmission can be
realized over C-V2X Sidelinks which were not designed for
large scale data transfer.

A. System Setup

Initial applications of V2X primarily focused on vehicles
sharing where, or who, they are (e.g., an ambulance approaches
the intersection) and what they are doing (e.g., emergency
braking). This work is interested in exploring the next logical
step, enabling vehicles to share what they see, which can be
useful for myriad applications. More specifically, this work
explores how to transfer vehicle sensor data to the RSU in
a low-latency and reliable fashion, as is shown in Step 1
of Fig. 1, but is agnostic to how that data is processed at
the edge or used/disseminated back to roadway users. Image
data is taken as a specific use case study for performance
evaluation, yet, the methodology could be easily extended
to other modalities in future work. Additionally, while the
adoption of mmWave or more traditional cellular links in the
form of Vehicle-to-Network (V2N) could increase the link
budget, this work chooses to explore C-V2X Mode 4. C-
V2X Mode 4 operates in a shared spectrum dedicated to ITS
and only uses single-hop connections. Therefore, it has the
potential for interoperability not tied to a specific network
operator (as would be the case in V2N) and is also currently
commercialized (as opposed to mmWave V2X which is so-far
limited to academic studies). While C-V2X Mode 4 has these
advantages, it relies upon autonomous resource allocation that
necessitates configuration of transmission parameters by the
On-Board Units (OBUs) within vehicles - how to configure
these parameters, given the information that is likely to be
available to each vehicle, is the problem studied in this work.

B. Deploying a C-V2X Testbed on UCSD’s Campus

This work leverages a real deployment of C-V2X radios on
the UCSD campus that can provide a close representation of
what will be seen in commercial networks. Fig. 2 provides a
visual overview of this deployment environment. The UCSD
C-V2X testbed consists of two major components: 1) a green
computing and communications enabled RSU node deployed
on a campus street lamp and 2) OBUs deployed into a fleet
of research vehicles. The RSU consists of a Commsignia
RSU kit [34] enclosed in a weatherproof box mounted at
pedestrian height on the pole. The antennas, for both C-V2X
and GPS, are mounted at the maximum allowable height by
the Federal Communications Commission: 8m. Each of the
antennas is oriented parallel to the lamp post. Both the RSU
and OBU contain the same underlying cellular modem, which
is a Qualcomm C-V2X 9150 [35] radio running the 3GPP
Release-14 C-V2X Standard1. The RSU consists of a co-
located NVIDIA Jetson TX2 [36] device for edge computing
and it is driven by solar energy. Additionally, the RSU is
accompanied by an LTE enabled router that provides remote
command and control functionality.

The OBU consists of a Commsignia OBU kit [37] installed
into a research vehicle. As mentioned previously, the OBU
utilizes the same Qualcomm C-V2X 9150 radio as the RSU,
however, the antennas are neatly combined into a single
module that is easily magnetically mounted to the roof of the
vehicle. The OBU was primarily interacted with via a laptop
over Ethernet, but the Commsignia OBU kit can also function
as a WiFi hotspot that allows for a tablet to connect and display
real-time radio status during operation.

The RSU is deployed on Voigt Drive, a road within the
UCSD campus, as is shown in Fig. 2. The study area chosen
for this work consists of the 100m of road to the immediate
east and west of the RSU. Although Section III will show
that usable range may potentially extend beyond this (at
least for small data sizes), the inter-site spacing for User
Equipment type RSUs is assumed to be 100m or the center of
intersections for freeway and urban use cases respectively as
defined by 3GPP TR 36.885 [38]; thus, this study area more
than covers the expected range that is likely to be encountered
in commercial deployments.

C. Realizing Image Transmission over C-V2X Sidelinks

The process for image transmission using C-V2X Sidelinks
is shown in Fig. 3. Each image must first be serialized to
a byte array; without loss of generality2, this work chooses
to utilize the well-known JPEG encoding that enables scaling
compression rates by changing a quality level that is defined
between 0 and 95. The image payload is then too large to
fit into a single WSMP packet, which is limited to 1390 by
the Commmsignia Application Programmer Interface (API),

1While there are 5G specifications recently made available for C-V2X that
offer enhanced functionality we were not aware of any commercial offering
for these 5G C-V2X devices when deploying the UCSD C-V2X testbed.

2The methodology presented in this work is independent of the utilization
of JPEG, as the RL algorithms presented could learn to utilize other encoding
techniques (or even other data modalities). This exploration is left to future
work.
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Fig. 2: Overview of the deployment of a C-V2X network on the UCSD campus.
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Fig. 3: Flowgraph of image transmission using C-V2X Sidelinks.

therefore, the byte array is segmented into multiple WSMP
packets with a specified payload size. Each of these WSMP
packets are then transmitted from the OBU to the RSU
with zero inter-packet arrival time. At the RSU, each of the
WSMP packets containing a fragment of the image payload
are reconstructed using meta-data included in each WSMP
packet. As shown in Fig. 3, losing even a single WSMP packet
can severely degrade the image quality. While it is feasible
that Deep Learning models could learn to be robust to packet
loss, this work assumes that an image frame is lost if even a
single WSMP packet is lost in order to decouple the study of
optimizing the wireless communications link and the study of
the algorithms employed at the RSU to process the data.

III. CHARACTERIZING C-V2X CAPABILITIES FOR
SHARING VEHICULAR CAMERA DATA

In order to characterize the capabilities of C-V2X for
sharing vehicular sensor data in a realistic setting, this work
first presents the results of a measurement campaign to capture
the WSMP packet level QoS characteristics observed on the
UCSD C-V2X testbed. The WSMP packet level QoS can
then be transformed into estimates of image frame level
QoS metrics through simple equations. Finally, while Packet
Delivery Rate (PDR) is primarily a function of the wireless
channel, the characterization of latency is dominated by the
prevalence of background traffic and therefore this section
concludes with a study of frame latency in the presence of
varying levels of background traffic.

A. Real World Measurement Campaign

One of the most critical metrics for vehicular communi-
cations is a measure of its reliability, which can be charac-
terized by PDR, or the ratio of packets that are successfully
received. As with all wireless communications, the PDR will
be primarily driven by two dynamic factors: 1) the effective
link Signal-to-Noise Ratio (SNR) and 2) the chosen MCS.
The former depends on many factors, such as the propagation
environment, but, loosely speaking, is a function of distance
between the transmitter and receiver under the assumption of
a fixed transmit power (that is assumed in this work to be
20dBm). The latter is typically a carefully selected parameter
based on a feedback loop from the receiver that provides
estimations of the channel state information - a feedback loop
that is not available in C-V2X Mode 4 due to its autonomous
operation. The MCS in the C-V2X radios used in this work
would typically be selected as a function of packet size (i.e. use
the minimum MCS that allows for the entire WSMP packet
to fit into the transmit opportunity, with the mapping based
on Table 7.1.7.2.1-1 in 3GPP TS 36.213 [39]); however, this
section explicitly restricts the modem configuration to a single
MCS for the purposes of studying the impact of MCS on PDR.

To determine the PDR, the research vehicle (described in
Section II) is driven along the roadway of the study area using
varying radio configurations and driving speeds. A range of
MCS are selected from {0, 5, 10, 15, 17} where 0 and 17 are
the minimum and maximum values respectively available from
Commsignia’s APIs. The packet sizes range from 100B to
1390B in increments of 100B, with 1390B being the maximum
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(b) PDR with MCS fixed to 0
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Fig. 4: WSMP packet level QoS characterization from measurement campaign on the UCSD C-V2X testbed. As expected, PDR generally decreases as a
function of Modulation & Coding Scheme (MCS), WSMP packet size, propagation distance, and vehicle speed; however, the relationship is non-linear and,
in the case of distance, asymmetric, due to site specific propagation characteristics.

WSMP packet size possible using Commsignia’s APIs. For
each configuration, the car is driven each direction on the
roadway twice at a target speed ranging from 10 to 40 miles
per hour, while still adhering to traffic laws and conditions
along the route. The WSMP packets are transmitted from the
OBU and recorded synchronously with GPS coordinates of the
vehicle during transmission. The WSMP packets received at
the RSU are recorded and post-processed to determine the
PDR for each configuration and vehicle location/speed by
averaging over 2s windows of time.

The WSMP PDR characterization results are presented in
Fig. 4. Fig. 4a shows the distribution of PDR across all
locations and WSMP packet sizes for each of the tested MCS
indexes. Unsurprisingly, PDR decreases as MCS is increased;
yet, its surprising that MCS above 5 are often completely
unusable at longer distances due to the exceptionally low
PDR. Therefore, for the purposes of showing the effects of
WSMP packet size and distance on PDR, only MCS 0 is
used. Fig. 4b shows the distribution of PDR for MCS 0 across
all locations for varying WSMP packet sizes. The PDR is
quite high for the 100-300B WSMP packet sizes (which would
likely be used for BSM and CAM use cases), but decreases
for larger WSMP packet sizes (which would be more useful
for transmitting larger data sizes such as the image frames
studied in this work). Further, it can be seen in Fig. 4c that,
while it is true that the link generally degrades as a function of
distance, the relationship is non-monotonic and asymmetric as
the wireless propagation depends on the site-specific geometry
of the deployment studied in this work. For instance, the
roadway to the western side of the RSU is occluded by foliage
which leads to dramatically worse wireless link performance
than similar distances to the east of the RSU.

As mentioned previously, the experimental protocol used
during the measurement campaign was to vary vehicle speeds.

However, practical safety constraints prevented a uniform
distribution from being obtained; for instance, the study area
contains pedestrian crosswalks, a stop sign, and, in some trials,
traffic can reduce the obtainable safe speeds as the roadway
speed limit is 25mph. Fig. 4d shows a histogram of the
vehicle speeds obtained during the measurement campaign.
As can be seen, while it contains a wide range of speeds,
it is heavily biased towards medium speed levels due to the
roadway conditions. Nonetheless, this data can be used to
show, in Fig. 4e for a few subsets of WSMP packet sizes
with MCS fixed to 0, that higher vehicle speeds negatively
impacts PDR, as would be expected due to increased Doppler
shift. Due to the naturally occurring roadway factors that cause
vehicle speeds to be heavily biased, the remainder of this work
will consider performance across the entire range of speeds
obtained without explicitly breaking out the performance into
sub-domains.

B. Characterizing Frame Level QoS for RGB Sensor Sharing

Characterizing QoS at the WSMP packet level has been
studied in prior works [1], [14]–[16]; however, this work is
interested in characterizing an even more challenging task:
image frame level QoS. From the WSMP packet level QoS,
we can infer much of the frame level QoS (which is plotted in
Fig. 5). As previously discussed, the successful reception of
a frame is defined to be the successful reception of all of the
individual packets required to successfully transmit that frame;
therefore, with the assumption that the probability of reception
of each packet is Independently and Identically Distributed for
a given location, we can define FDR as

FDR(m, p, l) = PDR(m, p, l)n (1)

where PDR, and by extension FDR, are functions of MCS
(m), WSMP packet size (p), and vehicle location (l) as
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Fig. 5: Frame level QoS characterization of image transmission. In 5a, the impact of varying JPEG quality levels on FDR are shown. In 5b and 5c, the impact
of emulated background traffic is shown where, surprisingly, the background traffic has little impact on frame latency but does result in lost frames.

discussed previously, and n is the number of packets needed
to successfully contain the entire image frame.

As can been seen in Fig. 5a, the FDR follows the same
shape as the PDR but the need for successful reception
of n packets greatly decreases the FDR as PDR degrades.
Obviously, needing to successfully communicate fewer packets
will improve FDR; thus, this work evaluates the impact of
compression, or JPEG quality level, on FDR. Logically, FDR
can be improved by sacrificing image quality, in some cases
sending a highly compressed image can sometimes more
than double the FDR over sending an image with minimal
compression. In other cases, utilization of heavy compression
only provides a minimal benefit such as at the edge of the
roadway study area where channel conditions are too poor to
support any type of transmission.

C. Effect of Background Traffic on Frame Latency & Loss

While the previous sections have isolated and studied reli-
ability as a key metric for QoS and how it can be impacted
through adaptation of varying transmission parameters, they
specifically ignored frame latency which is an undeniably
crucial metric given the real-time nature of many vehicular
applications. End-to-end packet delay in wireless communica-
tions is affected by a slew of different variables. The dominant
source of delay in C-V2X is the queuing delay experienced
while waiting on available radio resources - the length of
this wait is primarily impacted by network congestion. This
section describes an experiment designed to measure this
frame latency in varying levels of network congestion and the
results are presented in Fig. 5b and Fig. 5c.

To model network congestion, this work placed three C-
V2X radios in a laboratory setting where wireless channel
quality wouldn’t be a limiting factor. One radio was used to
transmit image frames (as described in Fig. 3) at a rate of
2 Frames per Second (FPS). While this rate is slower than
the FPS used in the experiments conducted in the remainder
of this work, it ensures that each frame is fully transmitted
before the next one is sent and thus each frame transmission
is independent. The transmitter sends 1000 frames for each
WSMP packet size and these configurations are randomly
shuffled to ensure uncontrolled time-varying factors do not
impact the experimental results. One radio was used for the
reception of the frames and is connected to the same computer
as the transmitter to measure frame latency accurately. Each

frame consists of 6.5KB of data representing a 300x300 image
frame with a medium quality level along with meta-data
encoding the transmission parameters and timestamp.

The third radio emulates background traffic applications
(e.g. CAM or BSM messages) that will cause network conges-
tion in commercial networks. Each background application is
modeled using a Poisson process to determine both the inter-
arrival times of the WSMP packets along with the payload
size of each packet. The mean periodicity of the background
application’s WSMP packets, λT , is 100ms. The mean size
of the background application’s WSMP packets is taken to
be 300B and is modeled in increments of 100B, (i.e. λS is
3). Therefore, each application repeatedly waits t ∼ Pois(λT )
milliseconds and then sends a single WSMP packet of size s ∼
100× Pois(λS) Bytes. A separate experiment is run for each
number of background applications taken from {0, 2, 4, 8} to
represent a range of network congestion.

Somewhat unexpectedly, the network congestion does not
cause significant differences in the latency of delivered frames
as shown in Fig. 5b. While frame latency decreases as WSMP
packet size increases (as would be expected due to needing to
transmit a fewer number of WSMP packets for a fixed frame
size) it does not have significant variance, or jitter. The impact
of network congestion does however show up in FDR as shown
in Fig. 5c. When background traffic is not present (i.e. 0
background applications), effectively 100% of the frames are
successfully delivered; however, as the network congestion is
increased by adding background applications, the FDR de-
creases. This is likely caused by either collisions or the C-V2X
radio enforcing a Packet Delay Budget (PDB) for each WSMP
packet; if the PDB cannot be satisfied due to insufficient
spectral resources then the packet is dropped3. Interestingly,
the results shown in Fig. 5c indicate that choosing the largest
WSMP packet size may not always be optimal as it increases
the chance that frame delivery will be unsuccessful when
network congestion is encountered. Co-existence between the
vastly different C-V2X use cases will be further discussed in
Section VI-D.

3PDB is a configurable parameter in C-V2X and can be adapted in real-
time by choosing amongst priority levels. Neither static nor dynamic PDB
adaptation is performed in this work. The priority level of each sent WSMP
packet is left as the default which chooses a 100ms value for PDB. Potential
adaptations of PDB are left to a future study.
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IV. UTILIZING RL FOR ADAPTIVE IMAGE
TRANSMISSIONS OVER C-V2X SIDELINKS

The prior section demonstrated that C-V2X sidelinks are
capable of carrying image frames but that the optimal trans-
mission parameters vary based on the transmitting vehicle’s
location (and, by extension, the specific cell site geometry
that influences wireless propagation characteristics) and the
network congestion. The current section begins by formulating
the adaptive image transmission task as a RL problem in order
to provide a general framework that can learn to optimally
transmit images from vehicles to the roadside edge in any
given RSU deployment environment. This work will refer
to this framework as Sensor Sharing OveR C-v2x sidElinks
using Reinforcement lEaRning (sorcerer). This section
then describes a system architecture developed in this work
which unlocks training an RL Agent remotely deployed along-
side commercial C-V2X radios using cloud based computing
resources for training4. The experience collection and per-
formance evaluation of this work are performed by the RL
Agent with HIL meaning that the presented methodology can
immediately be deployed on today’s roadways. The section
continues by presenting the methodology for emulating chan-
nel (modeled by the characterization undertaken in Section III)
and network congestion conditions in a lab setup in order
to provide a repeatable environment for experimentation and
direct comparison of methodologies. Finally, the section con-
cludes with a performance evaluation of an Agent trained to
maximize application goodput and shows that it outperforms
every static transmission configuration tested.

A. Defining the RL Problem

As shown in Fig. 6, there are three crucial signals to design
when defining a RL problem: action, state, and reward. The
problem studied in this work lends itself readily to make
adaptation decisions on a per frame basis - where the frame
rate is chosen arbitrarily in this work to be 10 FPS. The current
section studies the impact of two continuous actions that can
be taken on this frame (with two additional binary actions
considered in Section V). The first action allows for indirectly
adapting the frame size, B, by changing the JPEG quality
level, q, used for compressing the current image frame before
transmission. The second action allows for indirect control
over latency and FDR by adapting WSMP packet sizes. As was
established in Fig. 5, the optimal value of these changes based
on the vehicle location and the amount of network congestion;
thus, the state space should reflect estimates of these values. At
each frame, the vehicle’s current location, distance to the RSU,
and the number of WSMP packets that have been observed
from background traffic in the last second are utilized as the
state space. The latter is likely an underestimate of network
congestion as only successfully decoded WSMP packets are
reported to the higher levels of the C-V2X stack where this
metric is computed, but was a useful proxy for network

4The logic for determining transmission parameters is done in real time, on
vehicle, and therefore is not impacted by communication latency to/from cloud
resources. RL training is a separate process, performed relatively infrequently,
which is not sensitive to the increased latency of using cloud resources.
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Fig. 6: For each image frame, the Agent utilizes the current state estimates to
select the optimal action for the current frame being transmitted. The trans-
mission of multiple WSMP packets containing the frame undergo wireless
channel effects and are impacted by network congestion. If the entire frame
is able to be received by the RSU, a reward is computed describing the utility
of that image frame transmission - this reward is maximized by RL.

congestion in this work given the limitations of the physical
radio5.

The third signal, reward, is particularly important as it de-
fines what should be optimized. In the problem studied in this
work, there are three axes of optimization: 1) image quality,
2) frame latency, and 3) FDR. The latter two are directly
measurable in real time - each frame can be timestamped by
the sender and assigned a unique frame identifier to determine
whether frames have been lost in transit. The former, image
quality, can be challenging for real time estimation. One metric
that is widely used for determining the quality of image
reconstruction is Peak SNR (PSNR). However, this metric
requires knowledge of the original and received frame and
is expensive to compute; these practical constraints lead this
work to leave PSNR out of the reward function. Generally,
using a higher compression ratio will degrade quality. This
work therefore uses the frame data size as a proxy metric for
image quality. Frame size can be interpreted as the encoding
bit-rate which is also used as a proxy for Quality of Experience
(QoE) in many ABR works [31]. These three metrics can then
be logically combined into a single reward signal as

r(i) = ω1D
B
T (2)

where B represents the frame size, T represents the frame
latency, and 1D is an indicator that is 1 if the frame is
successfully delivered to the receiver and 0 otherwise. This
function can be intuitively interpreted as the application per-
ceived instantaneous goodput, or the amount of usable data
received within the time taken to deliver the frame, where
ω is a constant used to scale the metric to measure Mbps.
Investigating an alternate formulation of the reward function
to dynamically prioritize FDR will be undertaken in Section V

5Channel Busy Ratio (CBR) is a physical layer metric used in C-V2X
that could more accurately estimate congestion, but the values being reported
by the C-V2X radios in use were invalid and thus couldn’t be used for the
evaluation in this work. The usage of CBR in the state space, however, is not
incompatible with the RL framework presented.
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and exploring different definitions of QoE from prior works
is explored in Section VI-A.

Given the signals defined above, this RL problem can be
solved in multiple ways. This work chose to utilize deep RL
due to its recent successes in many fields and its ability to
arbitrarily model any policy. Specially, Soft Actor Critic (SAC)
[40] was adopted as it is the state-of-the-art in continuous
action spaces. The Agent is implemented by learning to pa-
rameterize a Beta distribution [41], which is bounded between
[0, 1] and then scaled and shifted to match the domain of
each action. The discount factor, γ, was chosen to be 0.1 as
the effect of each frame transmission is limited to a short
time horizon (e.g. additional impacts of queuing will only
impact the most recent subsequent transmissions). The policy
is updated every 256 frames and a replay ratio of 4 is used to
speed convergence. The Agent is configured to act randomly
for 2000 frames in order to seed the replay buffer with a
diverse set of experiences. The learning rate used is 3e-4 and
5e-3 is used as the Polyak averaging factor for soft updates
of the target Q networks. The target entropy is taken as the
negative size of the action space. Extensions to SAC will be
discussed in Section V, but the current section simply uses
SAC as described in prior works.

B. System Architecture Implementation

Many prior works have studied the applications of RL
in wireless networks; however, these studies are generally
conducted in simulated environments. This work applies RL
in real-time on top of commercial C-V2X radios in order to
demonstrate that RL is a mature methodology ready for practi-
cal applications in today’s cellular networks. Doing so requires
a robust engineering implementation that spans multiple nodes
and necessitates networked operation of distributed systems.
The system architecture developed for this work is shown in
Fig. 7 and is described in further detail below.

The system consists of four nodes: 1) a frame source on
the vehicle that periodically transmits image frames from
the OBU, 2) a frame sink at the RSU that receives the
image frames, 3) a RL task and experience database that is
running within cloud computing resources, and 4) an OBU
that is emulating background traffic. Discussion of the lat-
ter is deferred to Section IV-C. The source node hosts an
application that sends image frames at a constant rate. A
Connectivity Manager (conman) exposes a Python interface
to this application for image transmission. The conman hosts
the distributed network intelligence developed in this work
which manipulates the image frame (e.g. JPEG compression),
performs segmentation and reassembly of frames, and selects
the WSMP parameters for transmission. In order to make
decisions, conman needs a real time state estimate which
is provided over ZeroMQ sockets connected to a Location
and PC5 Service. The Location Service interfaces with an
external GPS sensor to provide real-time latitude and longitude
estimates of the source node’s location which are published to
conman. The PC5 Service uses the Commsignia Software
Development Kit to interface with the OBU. It registers
listeners to receive C-V2X traffic and publishes the payload

of these packets to conman which can then determine the
number of packets overheard from background applications.
Further, the PC5 Service translates the payloads from conman
to WSMP packets for transmission over C-V2X. After each
transmission, conman uploads a partial experience to the
cloud that consists of the state vector, the chosen action vector,
and the transmission is timestamped and identified with a
monotonically increasing frame number.

The sink node also hosts a PC5 Service for interfacing with
the RSU. The background traffic is discarded and successfully
reassembled frames are delivered to the application (as previ-
ously mentioned, if any WSMP packets belonging to a frame
are dropped then the frame is discarded). The application
then has all necessary information for computing the reward
described in (2) and uploads it to the cloud based experience
database. If the frame is not delivered, then no update needs
to be provided as the reward can be considered as 0. While
this methodology assumes time synchronization between the
source and sink applications, there are numerous algorithms
for maintaining this synchronization and therefore this is not a
limiting assumption. Further, the ability to upload experience
to the cloud assumes each node has network connectivity
(e.g. a typical 5G connection over licensed spectrum for the
OBU or wired back haul to the RSU). In practice, this is a
reasonable assumption as the majority of new vehicles have 5G
connectivity and the volume of data from experience reports
is minuscule compared to the size of image frames. Addi-
tionally, latency requirements for experience reports can be
significantly relaxed from the requirements for frame delivery.

There are two related tasks running within the cloud. The
first is a database that uses a ZeroMQ socket, listening on a
public interface, to collect experience reports and store them
into a database. The database task performs the necessary
linkages between reports such as: 1) matching state/action
pairs uploaded by source node with the associated reward
uploaded by the sink node as well as 2) augmenting each
entry with the next visited state as it is necessary to compute
the Bellman equations. Both linkages are easily achievable
through usage of the frame number. This database is useful
in its own regard as a monitoring tool that can provide near
real time performance information of sensor sharing from
vehicle to edge; yet, it’s primary usage in this work is to be
periodically queried by a RL task to return a random subset
of experience for updating the policy network (using SAC as
described in Section IV-A). This RL task listens to experience
updates as they are delivered to the cloud in order to determine
when to perform a training step. Once the policy network
parameters are updated from this training step, they can be
delivered to the instance of conman running on the source
node. As the cloud node cannot be aware of all instances
of conman, the source nodes open a connection back to the
publicly accessible cloud node to subscribe to these updates
(again using ZeroMQ).

C. Trace Driven Emulation of Field Conditions in the Lab

The system architecture presented in Fig. 7 can be deployed
onto mobile vehicles, but this work extends it to also support
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Fig. 7: System architecture of an Agent deployed onto a vehicle that can determine the transmission parameters for image frames using real time estimates of
the current state and report the chosen actions, and associated state vector, back to the cloud as a partial experience that is identified by a frame number. If
the frame is successfully received, the receiving application reports the application specific reward (e.g. frame latency) to the cloud to complete the experience
entry for use in RL. A RL task running within the cloud periodically samples from these experiences to learn a more optimal transmission policy and then
updates the policy parameters of the deployed agents.

trace driven emulation of the observed wireless channel char-
acteristics on the C-V2X testbed (discussed in Section III)
within a laboratory environment. This emulation capability
provides lower cost and heightened reproducibility in order
to facilitate the algorithmic experimentation and comparisons
done in this work. Instead of a live GPS location, a GPS
trace from a drive through the C-V2X testbed’s study area
is repeatedly read back from a file to emulate mobility.
Whenever a WSMP packet is sent, the PC5 Service looks up
the corresponding PDR for the given MCS, WSMP packet
size, and vehicle location and encodes this PDR into an 8-
bit trailer on the WSMP payload. The receiving PC5 Service
decodes the PDR and conducts a Bernoulli trial to determine
whether or not to artificially drop the WSMP packet to emulate
poor wireless channel conditions. This allows the Agent to
learn from, and be evaluated on, a link profile using data that is
collected from the C-V2X testbed as described in Section III.

The background traffic is emulated from a separate OBU
as described in Section III-C. However, each application is
implemented as a two-state Markov process (i.e. ON-OFF
application) in order to vary the amount of network conges-
tion. The time that each application spends in each state is
drawn from a Poisson distribution with a mean of 15s. The
initial state of each application is randomly chosen. The total
number of potential applications is 8 and the mean number of
applications that will be active over the long term is 4 owing
to the equal amount of time spent in the ON and OFF states.

Taken all together, the Agent interacts with a system as close
as possible to real-world conditions as a laboratory setting
will allow. During each transmission opportunity, the Agent is
provided with a real image file, compresses and serializes it
using JPEG, and transmits this byte array over a commercial
C-V2X radio. The emulated background traffic and artificial
packet loss introduced as a function of data playback, both
described above, provide varying levels of network congestion
and enable the Agent to experience random realizations of
packet loss as they would occur due to the wireless channel
conditions observed in the field.

D. Performance Evaluation

The Agent’s performance during training is shown in Fig. 8.
While the remainder of this work focuses on the Agent’s
performance after convergence, which is the more important
operational period, Fig. 8 provides insight into what could
occur if an Agent was trained on a live network from random
initialization. The Agent begins by acting randomly to perform
an initial exploration of the action space, it then adapts its
behavior from the gathered reward signals to continually
improve the operation of the link over time until eventually
converging towards a more deterministic, and optimal, policy
for image transmission. Fig. 8 shows the Agent’s average
performance in the environment over a rolling window of eight
thousand image transmissions; as can be seen, the Agent’s
behavior quickly improves from the performance of taking
random actions to outperforming all of the static configuration
methodologies tested after only 150k image transmissions (and
continues to refine its performance even after surpassing the
performance of these alternatives).

As a comparison, three static transmission configurations
were tested. In each, the WSMP packet size is fixed to 1390B
as this provides the best frame latency (Fig. 5b). Three JPEG
quality levels are considered, just as in Fig. 5a. Each static
strategy is evaluated for 8k frames (matching the rolling
window average of the Agent) for comparison - Fig. 8 shows
that the proposed RL adaptive transmission strategy achieves a
6.8% better throughput than the best static methodology used
for comparison (always transmitting the highest quality images
with the largest WSMP packet size).

It is perhaps unsurprising that choosing to transmit high
quality images provides the best comparison methodology as
seen in Fig. 8. These high quality images represent the largest
frame size and therefore drive instantaneous goodput to high
values when the frame is successfully delivered. However, only
about a third of these high quality frames are successfully
delivered meaning that this strategy is wasteful, in terms of
power and spectrum resources, and unreliable, in terms of the
application which is inherently safety critical. By comparison,
the RL Agent learned a strategy that not only outperformed
the high quality image strategy in the defined reward function,
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Fig. 8: Performance of sorcerer learning to maximize application goodput
by adapting the JPEG quality levels and WSMP packet sizes - the Agent
achieves 6.8% better goodput than any static configuration of the C-V2X
link.

but greatly out-performed this static strategy in terms of
FDR. Overall, every strategy has a low FDR with only the
transmission of low quality images leading to more frames
being delivered than lost; Section V will explore techniques
to remedy this.

V. SELF-OPTIMIZATION OF RISK VS REWARD TRADEOFFS

Attempting to provide the best possible goodput can lead to
a greedy policy that frequently swings for the fences - sending
high quality image frames even if they aren’t reliably received
as, on average, they provide the best reward. However, this
approach is incredibly inefficient in terms of power and spec-
trum usage. Additionally, from the application’s perspective
it is better for the network to explicitly declare a service
outage is occurring, which could be proactively handled within
application logic, instead of quietly dropping the frames in
transit. This section seeks to answer the questions: 1) how
can reliability be improved? 2) how can a service outage
be declared? and 3) how can a target reliability be supplied
to the Agent? To answer these questions, this section first
describes modifications to SAC to support an additional cate-
gorical action space that supplements the continuous action
space presented by sorcerer in Section IV and allows
for declaring a service outage along with increasing FDR
through a form of blind Hybrid Automatic Repeat Request
(HARQ). Then, methodology that allows for a specified risk
constraint to be optimized through Lagrangian relaxation is
presented, which this work refers to this as sorcerer-Risk
Constrained (sorcerer-rc). Finally, the section concludes
with a discussion of the final performance of all policies and
a discussion on the specific learned behaviors.

A. Improving FDR with an Extended Action Space

Improving FDR can certainly be accomplished by a combi-
nation of reducing the number of WSMP packets to send (by
reducing the JPEG quality level) and/or lowering the WSMP
packet size. However, most wireless communications typically
utilize a form of Forward Error Correction that allows for
correcting errors that occur due to the wireless channel; for

example, most cellular networks utilize HARQ that transmits
additional data for error correction when it cannot be decoded.
As C-V2X Mode 4 utilizes a broadcast channel, and does
not have feedback, it utilizes blind HARQ which simply
duplicates the WSMP packet, with different coding applied,
in order to improve the probability of successful reception.
This work (imperfectly) models this by allowing the Agent to
choose whether WSMP packets should be transmitted twice
and therefore increase reliability at the cost of queuing latency.

Despite best efforts, poor channel conditions can simply
mean that it is currently impossible to reliably transmit an
image frame. In these cases, the Agent should be allowed to
decide not to send at all. By doing so, it can not only conserve
power and spectrum resources but, also a service outage can
be explicitly declared to the application. The seemingly two
binary decisions of choosing whether to send and whether
to duplicate, can be more succinctly viewed as a Categorical
action space where the Agent can either: 1) choose not to
send a frame, 2) send the frame, or 3) send the frame with
duplication of WSMP packets. This extended action space
enables the Agent to grow the effective service area through
duplication and explicitly declare this effective service area by
choosing not to transmit. Furthermore, as the Agent can now
choose to shrink the service area, any reliability constraint
becomes feasible where there is an upper bound on reliability
when the Agent is forced to transmit at every opportunity.

As previously mentioned, SAC was chosen for the RL
algorithm as it excels when using continuous action spaces.
Recent works have explored how to adapt SAC to discrete
action spaces [42], [43]; this work leverages these efforts
to combine an Agent that concurrently learns a policy for
both a continuous (changing WSMP packet size and JPEG
quality levels) and a discrete action space (choosing whether to
transmit at all or with WSMP packet duplication). The primary
difference between the discrete and continuous versions of
SAC are in how the Q-function is computed. For a continuous
action space, the potential number of actions is infinite and
therefore the Q-function, Qc(s,ac), is computed using both
state, s, and the sampled continuous action, ac, as inputs.
This action is sampled from the policy, πc, using the reparam-
eterization trick and is therefore end-to-end differentiable and
can be optimized using any gradient based method. However,
with discrete action spaces, the value of each state-action pair
can be explicitly learned where the Q-function, Qd(s), only
takes the state as input and learns a separate output for each
potential discrete action, ad, where ad is a vector that defines
the probability of taking each discrete action (or is a one-
hot vector describing the sampled action). This work therefore
combines these two approaches and models the Q-function for
both a continuous and discrete action space as

Q(s,ac,ad) = Qc(s,ac)×ad
⊤ (3)

Given the usage of two policy functions for categorical
and discrete action spaces and the necessary extension of the
Q-function described by (3), the loss functions need to be
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updated. The Q-loss, JQ, is extended as

JQ(s,ac,ad, r, s
′,a′c,a

′
d) =

{Q(s,ac,ad)− [r + γ min
i∈{1,2}

QTi
(s′,a′c,a

′
d)]}2 (4)

where QTi represents the target Q networks. The alpha-loss,
Jα, which dynamically targets a specific entropy from the
policy network can then be computed using the joint entropy
of both the continuous and discrete policies.

Jα(s) = α{H[πd(s)] +H[πc(s)]− αT } (5)

In (5), H[·] defines the entropy of the policy and αT represents
the target entropy. The usage of α in policy optimization
remains the same as standard SAC and will be described
further in the next section.

B. Automatic Objective Tuning to Achieve QoS Constraints

Maximizing network throughput is often best effort; it is
expected to fluctuate due to channel and/or network conditions
and applications will typically gracefully degrade as through-
put declines. However, the reliability of a network is often
provided as a constraint. Therefore, this work seeks to allow
this constraint to be provided to the Agent optimizing the
transmission parameters. A risk signal, ρ, can be defined as

ρ =

{
1, if sent and not delivered
0, otherwise (6)

which is easily computed from the data available in the
experience database as described in Section IV-B. The Agent
can then be optimized to solve the following problem:

max
πd,πc

∞∑
i=o

γir(i)

s.t. E[ρ] ≤ βT

(7)

which maximizes the reward signal defined by (2) across
an infinite discounted time horizon, where γ represents the
discount factor that remains 0.1 as initially defined in Sec-
tion IV-A, while ensuring that the average risk of the policy
remains below an operator-supplied threshold, βT . Optimizing
the policy to maximize the discounted sum of rewards has been
well studied in various RL literature [44], and is handled in this
work by SAC, as previously described. However, constrained
policy optimization is more challenging and requires relaxing
the optimization problem to

max
πd,πc

∞∑
i=o

γir(i)− β E[ρ] (8)

where the discounted reward is estimated by the Q(·) function
and a new risk function, P(·), can be defined to estimate
the risk of a given state/action pair. Modeling P(·) using a
Neural Network ensures that it is differentiable and can be
easily learned by minimizing the mean squared error of its
predictions with the empirically observed risk signal.

Jρ = {P(s,ac,ad), ρ}2 (9)

The risk function is modeled identically to the Q function
described in (3) with the addition of a Sigmoid function on

0.4 0.6 0.8 1.0
Frame Delivery Rate

0.2

0.4

0.6

A
pp

lic
at

io
n

G
oo

dp
ut

(M
bp

s)

High
Quality

Low
Quality

Medium
Quality

Random

Target Risk
10%

Target Risk
30%

Target Risk
50%

sorcerer

Static
Random

sorcerer-rc
sorcerer

Fig. 9: Evaluation performance of all Agents on 8k frames.

the output to bound the risk between 0 and 1. Additionally,
the loss function (9), differs from the loss functions used for
training the Q function as it does not require the Bellman
equation (since it does not depend on any future values). The
optimal coefficient, β, for modeling the constraint can then be
learned by minimizing the following cost function:

Jβ = −β[P(s, πc(s), πd(s))− βT ] (10)

The policy loss is then a dynamically weighted summation of
the policy entropy, state/action estimated risk, and Q-value.

Jπ(s) = α{H[πd(s)] +H[πc(s)]} − β P[s, πd(s), πc(s)]

+ min
i∈{1,2}

Q[s, πc(s), πd(s)] (11)

The algorithm for risk constrained SAC is identical to the
original SAC algorithm except for the redefinition of loss
functions presented above and the addition of the new loss
functions, Jβ and Jρ.

C. Performance Evaluation

A separate Agent is trained for 300k frames (as was
done in Section IV) for a range of target risk thresholds:
{0.5, 0.3, 0.1}. After training, the Agent is evaluated for 8k
frames (to match the evaluation of the static strategies) with
results shown in Fig. 9. Two metrics are computed from those
8k frames: 1) application goodput and 2) FDR. The application
goodput is calculated as the average instantaneous goodput
over all N frames.

goodput = 1
N

∑
n

ω1D(n)B(n)
T (n) (12)

The FDR is calculated as the ratio between the frames suc-
cessfully delivered and those sent.

FDR =

∑
n 1D(n)∑
n 1S(n)

(13)

As can be seen in Fig. 9, the extended methodology pre-
sented in this section achieves higher goodput than all com-
parisons, even in the case of the most stringent risk threshold
of 10%. This is primarily due to the ability to selectively
enhance reliability by duplicating WSMP packets (specific
learned policy behavior will be discussed in Section V-D).
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The Agent with the most relaxed risk target (50%) achieves
a 23.3% improvement in goodput over simply always sending
high quality frames while still delivering 9.9% more frames
than when always sending low quality frames - adaptive
image transmission provides greatly improved performance
regardless of the metric of interest. Furthermore, the adap-
tation methodology presented in this section achieves a better
tradeoff between FDR and goodput (which can be observed
as the slope of each line). The Agent with a target risk of
10% still achieves 4.6% and 11.8% goodput improvements
over the simpler methodology from Section IV and the static
configuration of sending high quality images respectively. This
work simultaneously enables high goodput and FDR with the
desired FDR able to be explicitly targeted with a constraint.

The expectation of risk should be directly related to 1−FDR.
Fig. 9 shows that this relationship is closely preserved by the
optimization. The Agent with a 10% risk threshold achieves
87.1% FDR and the Agent with a 30% risk threshold achieves
a 68.7% FDR. While this is quite close, it still violates the
constraint by ≈ 2%. We postulate there are two possible
causes: 1) bias in risk estimation and/or 2) environment drift
between training and evaluation. For the former, many recent
RL algorithms utilize multiple Q networks6 for mitigating
estimation bias. This work only used a single network for
risk estimation and its possible that using two networks could
help to mitigate the estimation bias. This study is left to future
work. The other possible reason is environment drift. While
this work uses commercial C-V2X radios to show the maturity
of the developed approach to adapt to real world challenges, it
also means that these real world challenges impact the experi-
mental results. Therefore, the environment experienced during
evaluation could have seen additional interference that lowered
FDR. Further, the C-V2X radios used in this work periodically
cease transmission7, meaning that a lack of background traffic
during portions of training could have led to underestimation
of the risk of frame loss. In either case, lifelong learning of
RL would eventually adapt the policy to meet the constraint
under this environment drift.

D. Exploring the Learned Policy

While this work was shown to have an objective benefit,
it can also be useful to perform a subjective analysis of the
learned policies. In order to extract policy behavior, a set of
sample state vectors are constructed corresponding to every
1m of roadway within the study area. The final piece of state
information, the amount of observed network congestion, is
simply set to the mean value. This sample state vector can
then be passed through the final learned policies to extract an
imperfect visualization of their behavior, which is shown in
Fig. 10. The discrete decisions that are taken at each location
are represented by the shaded/textured background; only the
greedy decision, the action with the highest probability, is
shown for simplicity. The plots show the mean values of the

6Two networks are trained to estimate the Q-function and the minimum
Q-estimation between the two is used.

7The cause of the C-V2X radios periodically silently stopping transmission
is unclear but is believed to be due to a momentary loss of the GPS lock that
is required for operation.

continuous policy at every location and, because they have
different scales, there are two Y-axes corresponding to each
potential action. Two policies are visualized. Fig. 10a shows
the policy when following the Agent learned with a target risk
threshold of 30%, while Fig. 10b shows the behavior of the
Agent that was trained with a target risk threshold of 50%.

Comparing the two policies in Fig. 10 shows that when
wireless channel conditions are good, a similar policy is
learned regardless of the risk tolerance. For example, when
the vehicle is nearby the RSU or ≈ 50m to the west of it,
both Agents determined that the optimal thing to do is simply
to send the highest possible quality image, using the largest
packet size and not using duplication to minimize latency.
Similarly, both Agents learned that channel quality generally
degrades ≈ 50m to the east of the RSU and both handled this
by sending the lowest quality images and using duplication
and smaller packet sizes to increase reliability. Beyond those
regions, the two policies maintain a similar shape, but the
scales are different corresponding to the risk tolerance. For
instance, ≈ 75m to the east of the RSU, where channel quality
begins to improve, each Agent responds to this by increasing
the quality of images transmitted, but the policy in Fig. 10a
is more conservative in this increase as it is has a tighter risk
budget. Furthermore, the Agent trained with a 30% target risk
decided that frame transmission at the edges of the study area
was simply too unreliable to warrant occurring, showcasing
the ability to dynamically learn effective coverage areas.

The only portion of the observed policies that is not intuitive
based upon an understanding of the underlying deployment is
the western edge of Fig. 10b. The edges of the study area have
poor channel quality that leads to unreliable transmissions;
ergo, it seems rational that many of the mechanisms to
increase reliability would kick in such as using duplication and
lowering the quality of images and size of WSMP packets. Yet,
Fig. 10b shows that is not what was learned. It is suspected
that the Agent simply failed to converge to a useful policy in
this region of the state space. Instead, the Agent simply took
random actions as it was still exploring - the 50% quality level
representing the mean of a uniform distribution policy on the
JPEG quality level.

VI. ABLATION STUDIES

This section pressure tests the design decisions of this
work by performing a set of ablation studies, whose results
are outlined in Table I. First, the specific reward function
used is swapped with other possible formulations found in
literature showing that, as RL is used, the specific definition
is unimportant to the success of the framework for optimizing
any metric. Then, the impact of reductions to the state and
action spaces are explored that could be thought to aid in
generalization or casting the problem into a purely application
adaptation approach. Finally, the impact of the more commu-
nication resource intensive application studied in this work
on background traffic is explored. Unless stated otherwise,
for all experiments, the methodology developed in Section V,
sorcerer-rc, with a target risk threshold of 50% is used as
a base with small modifications described in each subsection.
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Fig. 10: Mean policy extracted from sorcerer-rc Agents using a sweep of the roadway study area, at 1m increments, with the observed background traffic
set to the mean observed value. Shaded/textured regions of the background represent the greedy discrete action decisions and each line represents the mean
of the continuous policy for that action. 10a depicts the policy learned when a target risk threshold of 30% is set while 10b showcases a target risk threshold
of 50%.

TABLE I: Results of the ablation studies targeting different QoE metrics
and removal of portions of the action or state space. Except for the static
configurations, a separate model is trained to optimize each definition of QoE
or permutation of the action/state spaces.

Action Space State Space Reward Function (QoE)

JPEG
Quality

WSMP
Packet Size

Outage/
Duplicate

Access to
Precise Location

Goodput
(12)

QoElin
(14)

QoElog
(15)

Adaptive Adaptive ✔ ✔ 0.66 0.44 0.53

Adaptive Adaptive ✔ ✗ 0.58 - -
Adaptive Adaptive ✗ ✔ 0.57 - -
Adaptive 1300 ✗ ✔ 0.54 - -

High (95) 1390 ✗ N/A 0.53 0.33 0.32
Medium (50) 1390 ✗ N/A 0.47 0.21 0.28

Low (0) 1390 ✗ N/A 0.21 0.06 0.16
The light gray text indicates the action or state space is unchanged from sorcerer-rc
An ✗ indicates discrete actions or state values are withheld
Average rewards are bolded to indicate the best performer within that column

A. Varying Definition of QoE

This work chose to optimize the instantaneous goodput;
however, other works have used differing definitions of QoE
from the user’s perspective when viewing a video. For example
in [31], varying notions of image quality is summed with
penalties for re-buffering and changes to the encoding rate.
While the latter two penalties aren’t relevant to this work
the definitions of image quality can be explored. The first
definition of QoE, termed QoElin in [31], is simply defined
as the linear function of the encoding bit rate

QoElin = 1D
B

Bmax
(14)

This work utilizes the frame size as the encoding bit rate and
normalizes it to be between 0 and 1. A second definition of
QoE used in prior works is termed QoElog and captures the
notion of diminishing returns as image quality is increased.
This was defined in [31] as log(B/Bmin) which is bounded
by 0 for the lowest bit rate and logarithmic as bit rate increases.
However, this definition does not capture the fact that a frame
could potentially be lost due to the lack of a re-transmission
mechanism, therefore this work modifies QoElog as

QoElog = log(1 + 1D
B

Bmin
) (15)

which is bounded by 0 when the frame is not received and
still logarithmic as bit rate increases. The mean performance

during evaluation for each definition of reward is presented
in Table I for this work (i.e. sorcerer-rc) on the top row
and the comparison static link configurations in the bottom
three rows. As can be seen, regardless of the specific metric
chosen for use as a reward function, this work is able to learn
a policy that significantly outperforms a static configuration
of the C-V2X link on the metric in question.

B. Ability to Generalize Using Only Distance

This work utilizes the latitude and longitude of the vehicle
in its state space. This enables learning rich policies that
could learn the specific wireless propagation characteristics of
the RSU study area; however, the consequence is that, while
the methodology will transfer to any RSU deployment, the
specific learned policies will not generalize. Therefore, while
this work does not have access to multiple RSU deployments,
it can remove the specific location information (e.g. latitude
and longitude) from the state space and force the Agent to
learn a policy that is symmetric around the RSU by only
using the distance to the RSU. While this experiment will
not precisely show the ability to generalize, it will present
a lower bound on the performance degradation caused by the
simplified state space. Table I shows that using distance alone,
indicated by an ✘ in the “Access to Precise Location” column,
can outperform both static configurations of the C-V2X link
and the other ablations but that this generalization incurs a
significant cost in the achievable performance. This reinforces
the choice to utilize GPS coordinates as well for a richer
state space that allows the Agent more freedom to adapt the
transmission policy.

C. Constraining to Bit Rate Adaptation

This work developed a rich action space that logically spans
multiple layers of the protocol stack. While adjusting the JPEG
quality levels can be analogous to an ABR algorithm that
would typically run within the application layer, choosing the
WSMP packet size, selective usage of a form of blind HARQ,
and choosing to declare a service outage are functionalities
that more closely align with the lower layers of the protocol
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Fig. 11: Cumulative Distribution Function (CDF) of observed WSMP packet
latency under varying types of background traffic. Small messages are
emulated as described in Section IV-C and image transmission is modeled
using sorcerer-rc with varying risk thresholds. The CDF describes the
percentage of received WSMP packets whose latency is below the value
indicated on the X-Axis. While the presence of small messages has effectively
zero impact on latency, the presence of image transmissions greatly impacts
the observed worst case latency.

stack. To evaluate localizing the Agent’s impact to only the
logical application layer, this work constrains the action space
to only choosing the JPEG quality level. Table I shows that this
constrained action space only narrowly outperforms, in terms
of goodput, a static configuration of the C-V2X link (while
also achieving an advantage in FDR by successfully delivering
10% more frames). Therefore, the decision to include WSMP
packet size in the action space in sorcerer is certainly
beneficial and the additional extensions of sorcerer-rc can
greatly increase FDR beyond what ABR alone can provide.

D. Characterizing Impact on Traditional V2X Applications

Finally, this work proposes using the C-V2X Sidelinks for a
more data intensive application. This will undoubtedly congest
the network and lead to degrading performance of the safety
critical applications that currently use it. To evaluate the extent
of this effect, this section presents a study that is the logical
inverse of the one presented in the rest of the work. The
sending of image data is considered as the background traffic
and the impact on latency and delivery rates of smaller WSMP
packets are measured. 1000 packets are sent for each WSMP
packet size in {200, 300, 400, 500} at a rate of 10 WSMP
packets per second with their configurations randomized. The
latency of each WSMP packet is recorded and aggregated
results are displayed in Fig. 11. Although the presence of
background traffic emulated as small messages, such as BSMs
or CAMs, has nearly zero functional impact on the observed
latency of WSMP packets, the presence of image transmission
nearly doubles the observed latency. The usage of a more
risk averse policy, which is generally more conservative in
its transmissions, can mitigate the average latency impact to
traffic from today’s use cases; e.g. ≈ 60% of transmissions still
achieve sub 20ms latency. However, the worst case latency
still remains the same when high quality images are being
transmitted (for instance, when the vehicle is nearby the RSU).
The worst case latency is a crucial metric for safety critical
messages; therefore, enabling learning of a transmission policy

that mitigates these potential negative impacts to other users
of the C-V2X spectrum is an area for future work.

VII. CONCLUSION

This work evaluated the capabilities of today’s commercial
C-V2X radios for supporting the challenging task of trans-
mitting sensor data from vehicles to RSUs with the specific
use case of image data studied. To support this evaluation,
a C-V2X testbed was deployed on the UCSD campus. It
was found that despite the fact that today’s C-V2X was
designed for the primary purpose of reliably transporting
small messages, C-V2X, operating in Mode 4, can support
sharing of image data from vehicles to the roadside edge with
≈ 50ms frame latency. This real-time sensor data sharing can
enable advanced use cases such as collaborative perception
or computation offloading to become reality. However, this
analysis also explicitly exposed a limitation of today’s C-V2X:
the technology is meant for broadcast transmission and lacks
the feedback necessary for adapting transmission parameters
to wireless channel and network conditions.

This work developed a RL framework for blind adaptation
of transmission parameters from the available out-of-band
information. Specifically, the JPEG quality level and WSMP
packet sizes were adapted on a per-frame basis, using real-
time estimates of vehicle location and network congestion.
The RL framework was trained and evaluated with the C-V2X
HIL which shows this technology is mature enough for real-
world deployment. While this application of RL was shown to
provide a 6.8% improvement in the effective throughput, the
FDR was still lower than 50%. Therefore, this work explored
the selective usage of a form of blind HARQ for improving
reliability. Moreover, this work presented extensions to SOTA
RL that allowed for a constraint on FDR to be provided
and, if this constraint could not be met, to simply cease
transmission instead of wasting power and spectrum resources.
This advanced methodology was shown to achieve a 23.3%
improvement in effective throughput over simply sending
high-quality images while still delivering 9.9% more frames
than when the policy is to only send the lowest possible quality
images. Further, this work showed that this methodology
could be used to learn a transmission policy that successfully
delivered 87.1% of the frames it sent - RL is capable of
enabling highly reliable transmission of image frames from
vehicle to RSU while maximizing the ratio between image
quality and latency. This can all be done by simply layering
network intelligence onto currently commercialized C-V2X
radios. No modifications to C-V2X standards or radio firmware
are needed to achieve these results.

This work took great effort to evaluate and augment C-
V2X in a realistic scenario: using commercial C-V2X radios
to conduct a measurement campaign, training and evaluating
RL Agents with HIL, emulating varying network loads from
an external radio, etc. Yet, some potential issues may only
be exposed at scales beyond the current capabilities of the
UCSD C-V2X testbed. For instance, deploying multiple RSUs
in varying deployment scenarios (e.g., highways or denser
urban environments) would enable evaluation in a broader
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range of speeds and wireless channel conditions. Overlapping
RSU coverage ranges would allow for exploring soft handoffs.
While C-V2X Mode 4 operates in a broadcast mode that
has no hard association with any specific RSU, the RL
methodology developed in this work optimizes for specific
links and, therefore, may have to be extended with some form
of implicit link selection logic in scenarios where multiple
RSUs are in the communication range of the vehicle. This
scale would also enable further exploration of the most crucial
limitation identified in this work: the transmission of images
causes significant network congestion that can nearly double
the latency for other users of the C-V2X spectrum.
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