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ABSTRACT
At-home exercising strongly predicts physical therapy patient out-
comes, underscoring the need for analyzing patient behaviors at-
home via remote patient monitoring. Contemporary methods for
remote patient monitoring rely on specialized sensors, i.e., Inertial
Measurement Units, RGB-Depth cameras, motion capture systems,
or stereo vision which are costly and not scalable to all physical
therapy patients. Here, we observe a lack of literature using only a
monocular RGB camera. In this paper, we demonstrate a skeletal
feedback model for at-home exercises using only video acquired
from a smartphone camera. We propose models for (i) Patient Per-
formance Evaluation - which classifies the correctness of exercises,
and (ii) Guidance - which identifies why the exercise went wrong
so the patient can correct themselves. We use these models on our
dataset of four common physical therapy exercises labeled by a
physical therapist. Our results demonstrate the feasibility of us-
ing skeletal data from state-of-the-art 3D human pose estimation
models for physical rehabilitation exercise evaluation and guidance.
Thus, we enable remote patient monitoring and guidance from a
single camera - making it highly cost-effective and scalable.
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1 INTRODUCTION
The field of human action evaluation (HAE) is broad in its appli-
cations, ranging from gait analysis [27] to judging Olympic per-
formance [22]. Physical rehabilitation is one of many applications
which can significantly benefit from using HAE technologies [3].
Using skeleton features in HAE was shown to be promising in [9];
however, these studies are limited to low fidelity exercises, i.e., large
amplitude movements.

Using specialized sensors, such as Inertial Measurement Units
(IMUs) [17], RGB-D cameras [14] ,[19],[31],[20], or motion capture
systems [6] for HAE have shown promising results in displaying ac-
curate assessment and quantification of rehabilitation and strength
exercises. While these specialized sensor-based assessment tech-
nologies provide high accuracy, they are limited in applicability due
to the inherent cost and complex nature of obtaining specialized
hardware for action evaluation. Moreover, standardizing skeleton
data and deep feature representation methods from the sensors is
another key issue in developing reliable quality assessment algo-
rithms for HAE [12]. Thus, relying on specialized hardware limits
practical applications of HAE and prevents the creation of standard
datasets required to advance the technology.

Recent advances in 3D Human Pose Estimation (HPE) such as
[21], [16] have allowed for the feature extraction of skeletal key
points from amonocular RGB camera. These 3DHPEs are popularly
used to predict key joint positions on the body [11]. In this paper,
we show that classical machine learning methods such as Dynamic
Time Warping (DTW) are limited for monocular RGB HAE due to
the inherent noise associated with predicting the depth dimension
from a monocular RGB camera. Using 2𝐷 skeletal information in
conjunction with deep learning has shown promising results for
regression analysis [13]. In HAE for physical therapy (PT), getting
3𝐷 skeletons is necessary to clinically assess range of motion in key
joints. Furthermore, physical rehabilitation requires corrective feed-
back for improving patient outcomes [8] [10]. Although monocular
RGB 3D HPE is promising, we observe no HAE with high-fidelity
feedback in the literature.

In our work, we propose a framework for skeleton-based HAE
for PT exercises from a single camera, that evaluates patient rep-
etitions as correct or not, and offers explainability for correcting
the incorrect movements. For this paper, we narrow the scope to
human Patient Performance Evaluation and guidance, assuming
3D skeletal features are obtained from a 3D human pose estimator.
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2 RELATEDWORK
We review various approaches proposed for general HAE and for
PT applications, and highlight the major differences between them
and our work. Although specialized sensor-based systems for phys-
ical rehabilitation are popular in the literature [15], we observe
limited approaches based on a single RGB camera. To our knowl-
edge, there are no 3D skeletal feature, monocular-based approaches.
The literature highlights the importance of 3D skeletal features as
a constituent to HAE in physical therapy; therefore, our work com-
plements existing work that quantifies physiotherapy metrics such
as range-of-motion and joint angle-based success criteria implicitly,
by learning from data.

2.1 HAE based on complex sensors
Rooted in classical signal processing [4], matching techniques have
seen some success in RGB-D applications [29]. Another classical
approach [7] was used as a screening tool by performing anomaly
detection on several activities of daily living (ADL). This system
allows for health service provider intervention for given neuromus-
culoskeletal conditions but does not address rehabilitation. More-
over, we observe classical analytical methods are insufficient for
datasets with low signal-to-noise ratio, i.e., collected using monoc-
ular RGB with skeletal features engineered using state-of-the-art
HPE models.

Deep learning approaches have been popular for regression anal-
ysis [24] [30] on RGB-D, optical tracking system [14], and IMU
[26] datasets. These regression models do not provide any patient
feedback. The ability to use deep learning to diagnose and track
the progression of Alzheimer’s Disease was shown in [31].

2.2 HAE based on a single RGB camera
Outside of physical therapy, approaches based on a single RGB cam-
era for HAE have been shown by [13], which utilized 2D skeletal
features extracted from monocular RGB to train deep learning re-
gression models on the UNLVOlympic Diving andMIT Olympic Ice
Skating Scoring datasets. Pseudo3D was used to extract spatiotem-
poral features from video on the UNLV Diving dataset [5]. The
feature engineering here [23] is limited to pseudo representations
of human pose estimation.

For physical rehabilitation, [25] uses a regression-based quantita-
tive scoring model trained on the KIMORE dataset using monocular
RGB. A lack of accurate determination of joint angles from 2D skele-
ton data limits the extent of evaluation of exercises. For example,
indicators based on range of motion of joints, a prevalent metric
used in PT, cannot be modeled (even implicitly) by 2D joint data.
Feedback on static exercises only was shown in [18]; these comprise
a small fraction of rehabilitative exercises.

3 METHODOLOGY
We begin by defining key terms and notation in Section 3.1. In
Section 3.2, we explain our data collection method, while in Sec-
tion 3.3, we build the case to show that classical methods such as
Dynamic Time Warping are not suitable for evaluating repetitions
and providing guidance results for data collected using monocular
RGB camera videos. We then describe our proposed methods in
Sections 3.4 and 3.5.

Figure 1: Process Flow: (A) Patient records a video performing an
exercise, (B) each frame is skeletonized, (C) the skeletons are trans-
formed to an angular domain and post-processed, (D) the resulting
vector is fed to PPE and Guidance models, (E) patient receives feed-
back.

3.1 Terminology
We focus on HAE using a monocular RGB camera which is available
in most smartphones and tablet computers. For simplicity, any data
is from a monocular RGB camera unless otherwise specified.

For Patient Performance Evaluation (PPE), we formulate and
define the following tasks in our processing and data pipeline.

• Skeletonization: Given an RGB frame containing a human,
skeletonization refers to the process of extracting the 3D
(x,y,z) coordinates of key joint positions and constructing
a stick figure-like model of the human. The term skeleton
refers to the constructed stick figure. This paper uses a cus-
tom skeletonizer that gives results similar to [21].

• Segmentation: Given a sequence of skeletons from the
video feed, segmentation is the process of extracting exercise
repetitions from the entire exercise session. Each exercise
repetition has start and stop frame numbers in the video. We
use r to denote a repetition.

• Patient Performance Evaluation (PPE):Given an exercise
repetition, PPE assigns the exercise repetition a label from
the set {𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑}. Ground truth labels are determined by
an expert, i.e., a licensed physical therapist.

• Guidance: For a repetition that has been tagged 𝑏𝑎𝑑 , guid-
ance is the suggestion to correct the form of that repetition.
For example, while doing a deadlift, possible guidance could
be "keep back straight" if the patient has a rounded back.

Fig. 1 shows the overall flow of our proposed process. Given the
abundance of literature on human pose estimation and segmenta-
tion, we narrow our attention to PPE and guidance methods.

3.2 Feature Engineering
We record student volunteers performing exercises on phone cam-
eras. We provide more details on data collection in Section 4.1. We
use a custom skeletonization model, which outputs the 3D positions
of 17 key joints as in [21]. The videos are then skeletonized and
segmented, and the individual repetitions are fed as input to the
subsequent steps..

We begin by selecting joint angles relevant to the exercise 𝐸 as
determined by an expert. We note that the selected joint angles 𝑎 𝑗
could be those that move during the exercise as well as those that
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Figure 2: The distributions of similarity scores produced by DTW on
good (green) and bad (blue) repetitions are highly overlapping.

.

might be required to stay stationary. Let A𝐸 = {𝑎 𝑗 } be the set of
such selected joint angles for exercise 𝐸.

To formalize, for a repetition r belonging to exercise 𝐸 of time
length 𝑇 video frames, we skeletonize to obtain a tensor of shape
(𝑇, 17, 3), for 17 joints and 3 spatial dimensions. For each frame
𝑖 ∈ [1, ..,𝑇 ], we compute the angles for the joints in A𝐸 . Let 𝑣 ( 𝑗,𝑖 )
be the angle for joint 𝑎 𝑗 at time 𝑖 . The 2D tensor V = [[𝑣 ( 𝑗,𝑖 ) ]] of di-
mensions ( |A𝐸 |,𝑇 ) is then smoothed and subsampled as described
in the paragraph below to get Ṽ. This Ṽ is used as an input to the
models described in Sections 3.4.1 and 3.4.2.

Smoothing filter: We use an averaging filter with window size
5 on the time series of individual joint angles to smooth out outliers.

Subsampling: As different subjects perform exercise repetitions
at different rates, the V vary in width. This can cause problems
in training deep neural networks including difficulties in batch
training and data preprocessing. Based on our discussions with the
physical therapist, the exercise rate is seldom useful in classifying
a repetition as 𝑔𝑜𝑜𝑑 or 𝑏𝑎𝑑 . More importance is given to the form,
which does not depend on the rate. Hence, we subsample each
repetition to 20 equidistant frames.

3.3 Classical Methods: Dynamic Time Warping
Dynamic Time Warping (DTW) is a method for measuring simi-
larity between two temporal sequences. It was used successfully
in the context of physical therapy exercises in [29] where data
was collected with a Microsoft Kinect Camera. In our experiments,
DTW could be applied to patient repetitions to compare them with
a "ground truth" coming from our physical therapist consultant.
In concept, it could allow the cumulative difference across all key
angles to be used as a general threshold for PPE while using angle-
specific thresholds to provide feedback on any particularly incorrect
angles. Despite its efficacy with RGB-D based datasets, we observed
poor results on our 3D HPE skeletal data. Fig. 2 plots the distribu-
tion of similarity scores per joint angle from DTW for 𝑔𝑜𝑜𝑑 and 𝑏𝑎𝑑
repetitions; the substantial overlap between the two distributions
makes the thresholding-based approach infeasible. Thus, we turn
to deep learning-based methods that are more potent in finding
fine patterns in the data.

3.4 Patient Performance Evaluation (PPE)
In this section, we describe our neural network-based approach to
PPE. We first describe the data processing steps and then the model
architectures.

3.4.1 CNN-based PPE. In this section, we describe the convolu-
tional neural network (CNN) architecture used for classifying Ṽ

Figure 3: CNN based PPE: Temporal Convolution followed by Spatial
Convolution, Avg Pooling and Classification Head

Figure 4: Guidance Process: Autoencoder trained on good reps learns
the intrinsic features of exercises. Reconstruction error is used to
get feedback cues.

to the PPE label set 𝑌 = {𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑}. In the first layer, we apply a
convolution filter on the time axis (temporal convolution), i.e., a
kernel of shape (3, 1) and output channels 32. Then the next layer
is convolution on the angles (spatial convolution), i.e., a kernel of
shape (1, |A𝐸 |) and output channels 64. After each of these two
convolutions, a ReLU non-linearity is followed by a batch norm.
Finally, the feature map from the last convolution is average-pooled,
followed by a binary classification head. The intuition for choosing
the above architecture is that the temporal convolution learns the
temporal context at time 𝑡𝑖 of the angle 𝑎 𝑗 . Once the context of the
angle has been set, the model learns the interdependence relations
among the joint angles. To the best of our knowledge, ours is the
first method to view human Patient Performance Evaluation as a
Spatio-Temporal convolution network.

3.4.2 Attention based PPE. In this section, we describe the archi-
tecture of the attention-based transformer classifier used for PPE.
Attention networks have gained popularity by learning to attend
to values at different timestamps and have been successful in natu-
ral language processing and computer vision [28]. The number of
heads is chosen to be 2, with a 512 embedding dimension for the
encoder. A classification head follows the encoding head.

3.5 Guidance and Exercise Feedback
This section proposes our method for generating guidance and
feedback mechanisms for the 𝑏𝑎𝑑 repetitions. An autoencoder is
a model that encodes the input into a feature map and then uses
the encoding to decode it back to the input. It is used to train an
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underlying model distribution of the data. With this context, we
first train an autoencoder using only the 𝑔𝑜𝑜𝑑 repetitions to make
the neural network learn a robust 𝑔𝑜𝑜𝑑 template of the exercise.
The mean and variance (𝜇𝑎 𝑗

, 𝜎𝑎 𝑗
) of the reconstruction error for

each joint angle are collected. Then for a given 𝑏𝑎𝑑 repetition, the
reconstruction error 𝑒𝑎 𝑗

from the autoencoder is computed. The
angles with the highest 𝑧-score: 𝑧𝑎 𝑗

=
𝑒𝑎𝑗 −𝜇𝑎𝑗

𝜎𝑎𝑗
are selected as the

ones responsible for the repetition being 𝑏𝑎𝑑 . The process is shown
visually in Fig. 4.

AutoEncoder: Following similar arguments on the efficacy of
attention-based models on time series data as described in Section
3.4, we propose to use an attention based autoencoder. While im-
plementing a corresponding CNN-based auto-encoder, we found
maintaining the convolutional upsampling layers to consistently
output the same size vector as the input for different exercises non-
trivial, and adding unnecessary complexity to our model pipeline.
In the attention-based autoencoder model, we use the default num-
ber of dimensions for the embeddings, with the number of heads
equal to |A𝐸 |, and mean square error (MSE) as the loss function.

4 EXPERIMENTS
4.1 Data
In this section, we discuss the details of our dataset, which we use to
demonstrate the efficacy of our proposed PPE and guidance models.
As existing datasets [14] [2] [1] do not have corrective feedback
and classification scores, we were required to create our own.

4.1.1 General Setup. Based on consultation with a physical ther-
apist, we selected four exercises that are frequently prescribed in
physical therapy, involve compound movements, and collectively
cover multiple focus areas (shoulder, legs, hips). The exercises are:
double leg Romanian dead-lift (DoubleRDL), single leg Romanian
dead-lift (SingleRDL), single leg mini squat (SingleMS), and rotator
cuff (RotatorCuff).

Students working on the project volunteered to be recorded per-
forming exercises. We selected 10 subjects for our data collection.
Before recording each exercise, the subjects were shown a demon-
stration video created by the physical therapist that shows several
repetitions of the exercise with proper form. The subjects were
asked to recreate 10 repetitions seen in the video to the best of their
ability. For unilateral exercises, subjects were asked to perform 5
repetitions on each side. After the first 10 repetitions, subjects were
informed about common mistakes seen in physical rehabilitation.
For example, a DoubleRDL is often performed with the subject’s
spine being too rounded with too much scapular protraction or the
subject’s knees being too bent or locked out. These subtle mistakes
have a profound impact on muscle activation during the exercise.
The subjects were instructed to incorporate these incorrect postures
into an additional 10 repetitions.

To test our proposed methods’ robustness to different viewing
angles and camera types, we recorded subjects using five different
smartphones (iPhoneModels X, 11, 7, 8, and Google Pixel 3A) placed
on tripods approximately 4 feet high and at five different angles
(30, 60, 90, 120, and 150 degrees) to the subject. To summarize, data

Exercise Evaluation (F1 Scores) Guidance (top-2)
Baseline Ours Baseline Ours
DTW CNN Attention DTW Attention

DoubleRDL 0.197 0.262 0.255 0.846 0.884
SingleRDL 0.052 0.222 0.274 0.652 0.679
SingleMS 0.435 0.544 0.519 0.805 0.858
RotatorCuff 0.569 0.78 0.769 0.652 0.758

Table 1: Results: F1 scores of the PPE models, and top-2 accuracy
of the Guidance models. The Baseline used is the DTW method
proposed in [29].

consists of 1000 repetitions for each exercise from 10 subjects, and
5 camera angles.

4.1.2 Labeling. For each video recording, each exercise was seg-
mented manually into repetitions which were classified as being
𝑔𝑜𝑜𝑑 or 𝑏𝑎𝑑 , and the two most erroneous movements that needed
correction were noted. Our final dataset includes 19% 𝑔𝑜𝑜𝑑 repeti-
tions for DoubleRDL, 15% for SingleRDL, 42% for SingleMS, and
50% for RotatorCuff. This variation is due to the fact that subjects
were more knowledgeable about proper exercise form for some
exercises compared to others.

4.2 Results
We split the 10 subjects into 3 folds (with 4, 3, and 3 subjects), and
train the model on 2 of the folds, and evaluate the model on the
remaining fold. We show the mean F1 score of the 3-fold cross
validation.

Patient Performance Evaluation For PPE, we use negative
log likelihood loss for training. We use the 𝐴𝑑𝑎𝑚 optimizer for
training with learning rate 1𝑒−4 and default weight parameters 𝛽 =

(0.9, 0.98), and batch size 16. We report the F1 score of the binary
classification model. We see that both the CNN and Attention-
based models consistently outperform DTW (see Table 1). Between
the CNN and Attention-based models, the Attention-based model
performs slightly better than the CNN-based model.

Our results show promise that our novel solutions can classify
exercises based on single camera input.

GuidanceWe map each joint angle to an action item that the
subject could do to correct that angle based on the output of the
autoencoder. For guidance models, we report the 𝑡𝑜𝑝 − 2 accuracy.
Specifically, it is considered correct if either of the two most er-
roneous predicted angles match the PT judgment. Human body
movements have constraints and the joint angles do not operate
in isolation from one another. Correcting one angle could affect
the correctness of the other angle - for example, in DoubleRDL,
making the back straight would still be conducive to correcting
locked knees. Hence, the top-2 accuracy metric is justified.

For training the Attention autoencoder, we use the Adam opti-
mizer with learning rate 1𝑒 − 3 and default weight parameters
𝛽 = (0.9, 0.98) with batch size 32. In Table 1, we see that the
Attention-based autoencoder method outperforms DTW. Ours is
the first deep learning-based approach to PT guidance.

5 CONCLUSION AND FUTUREWORK
We propose deep-learning Patient Performance Evaluation and
guidance models for PT rehabilitation and at-home monitoring
using only a smartphone camera. Our CNN and Attention networks
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Exercise Guidance Criteria
DoubleRDL Knees Too Bent, Knees Locked, Back Too Round,

Feet Too Far Apart
SingleRDL Knees Too Bent, Knee Locked, Back Too Round,

Leg Not In-Line
SingleMS Hips Not Level, Squat Too Low, Twisting Torso
RotatorCuff Twisting Torso, Arm Too Extended, Lifting Arm

Too High/Low
Table 2: Guidance cues defined by PT

show improved results on PPE and guidance for all four exercises.
We observe the importance of a robust dataset as a priority for future
work. In contrast, DTW would not benefit from such a dataset. To
the best of our knowledge, this is the first deep learning-based
approach for PT guidance. In the future, we plan to run clinical
trials on the effectiveness of our method on patient outcomes and
expand our exercise library to many more exercises.
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