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Abstract—The current Cellular Vehicle-to-Everything (C-V2X)
Sidelink communication protocol provides a low latency interface
for sharing short safety messages among Road-Side Units and
vehicles. However, while its packets are broadcasted in the channel,
the throughput is vulnerable to channel conditions and cannot meet
the needs of the emerging connected and autonomous vehicles
applications (e.g. vehicular fusion tasks), which require multi-
modal and multi-source sensor data sharing. In this work, we
establish a C-V2X testbed on the campus of the University of
California, San Diego, to study the feasibility of using C-V2X
Sidelink communications for transmitting sensor data in real-
time. We implement an end-to-end RGB sensor data (i.e. camera
image frames) transmission mechanism on the C-V2X Sidelink
testbed and explore the corresponding Quality of Service (QoS)
characteristics under two configurable link-level parameters, the
Modulation and Coding Scheme (MCS) and packet size. We then
propose a cross-layer predictive and adaptive framework which
adjusts, in real-time, the MCS and packet size settings based on
side-channel information to optimize the QoS for image frame
transmission. The real-world trace-driven emulation shows that the
proposed policy improves the average frame goodput performance
by 28% compared to fixed configuration policies that are used in
current Sidelink communications.

Keywords— C-V2X, Link Adaptation, Sidelink, Testbed, Vehicular
Data Fusion

I. INTRODUCTION

The emergence of connected and autonomous vehicles (CAVs)
include capabilities of multi-sensor data acquisition, processing, and
connectivity to support advanced vehicular applications. As a result,
vehicles are now smarter and can coordinate with other vehicles,
bicyclists, pedestrians, road side sensors, and infrastructures over
vehicle-to-everything (V2X) [1] communications. Traditional V2X
communications for real-time vehicular applications involve sharing
telematics data and passing the Basic Safety Messages (BSM) [2]
with other vehicles, or the Road-Side Unit (RSU), over short-range
wireless communications. However, in the realm of CAVs, many
vehicular fusion applications require sending raw or preprocessed
sensor data to the vehicular edge computing (VEC) nodes at one-
hop wireless distance for computing different degrees of data fusion.
Therefore, these V2X communications can also carry complex multi-
modal and multi-source sensor data for vehicular fusion tasks. Some of
these fusion tasks demand real-time performance constraints for data-
transmission and computing involving complex data-driven algorithms.
The V2X communications has evolved from Wi-Fi based vehicular
ad hoc network (VANET) to dedicated short range communications
(DSRC) [3] in recent past to satisfy real-time requirements over short
rage wireless communications. In recent times, Cellular Vehicle-to-
Everything (C-V2X) [4] has been developed as a promising next
generation technology that provides a better link budget than DSRC
by incorporating V2X over cellular communication technology. For
real-time applications, it uses PC5 Sidelink [5] interface, thus also

obtaining low latency. Like its predecessor V2X technologies, C-V2X
Sidelink transmits short messages over broadcast to communicate with
other vehicles, RSUs, or infrastructure. However, as C-V2X Sidelink
is designed for broadcasting the BSMs or small telematics data, we
need efficient and adaptive protocols that can support the Quality of
Service (QoS) of the sensor data transmission for these complex tasks.

The motivation of sharing and exchanging vehicular sensor infor-
mation and fusion in real-time arises from the limitations of current
Advanced Driver Assistance System (ADAS). While ADAS provides
useful benefits to the driver, they are still far from perfect due to
utilizing only the vehicles’ on-board sensors. Although modern vehicles
come equipped with advanced sensors (e.g., RGB cameras, radar and
lidars), each of these sensors has inherent range and FoV limitations
and can also be affected by environmental conditions such as weather
and occlusion. However, this problem can be circumvented by sharing
the sensor data from multiple vehicles over V2X communications -
filling in gaps in each individual vehicle’s sensor coverage. This would
need C-V2X’s continued support of low-latency but also much higher
throughput data transmission compared to transmitting BSM which
are of low data size (< 1KB). Vehicular sensor data are of much
larger sizes, e.g., RGB images (1−100KB), lidar point-cloud images
(10 − 1000MB). However, the current C-V2X Sidelink protocol
has low throughput and is unreliable for uploading fusion data. To
explore and mitigate the issue, and enable fusion data transmission
over C-V2X Sidelink, in this work, we established a real-world C-
V2X testbed. We chose to begin this study with the use of C-V2X
for mid-size data load (i.e. RGB images) and implemented a RGB
frame transmission mechanism using WAVE Short Message Protocol
(WSMP) packets over the C-V2X Sidelink interface. We explored its
frame level QoS characteristics under different configurable parameters,
i.e. the Modulation and Coding Scheme (MCS) and WSMP packet size.
A cross-layer predictive and adaptive framework is then proposed for
enhancing the frame level QoS (e.g. frame transmission goodput, which
is an interplay of frame transmission delay or frame loss rate) of C-
V2X Sidelink. Real-world trace-driven emulation result shows that our
proposed link adaption policy achieves more than 28% improvement of
average frame transmission goodput compared to fixed configuration
strategies, showcasing its advantages in supporting data-rich real-time
vehicular applications.

The research contributions of our paper are the following:
• We study the feasibility of using C-V2X Sidelink for fusion data

transmission by establishing a C-V2X testbed and implementing
an image frame transmission mechanism over the broadcast
channel of the C-V2X Sidelinks.

• We have developed a Deep Learning (DL) based frame-level
QoS estimation model, which estimates the current frame
transmission delay and reliability based on the vehicle’s location,
speed, and the MCS and packet size settings of the C-V2X
Sidelink.

• We have proposed a link adaption policy from side-channel
information, which adjusts in real-time the MCS and packet size
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Fig. 1: C-V2X testbed setup at the UCSD campus.

settings to improve frame transmission goodput performance
over the C-V2X Sidelink channel without explicit coordination
between RSU and vehicles.

In the following of this paper, we will present our C-V2X
testbed setup and initial QoS characterization results under different
configurable parameters in Section II. In Section III, a mechanism
of using the WSMP packets over the C-V2X Sidelink channel to
transmit fusion data is introduced. A cross-layer predictive and adaptive
framework is then proposed in Section IV and evaluated using real-
world trace-driven emulation result in Section V.

II. SYSTEM SETUP

In this work, we aim at real-world demonstration of the feasibility of
using C-V2X Sidelink beyond transmitting safety messages. Therefore,
we build a C-V2X Sidelink testbed at the University of California,
San Diego (UCSD) campus. The external appearance of this testbed
is shown in Fig. 1.

A. C-V2X Testbed
This testbed consists of two major parts, the RSU and On-Board

Unit (OBU) modules. The RSU module is shown in Fig. 1a, which
consists of Commsignia RSU kit [6] and two 8m height C-V2X Urban
Antennas. The OBU is shown in Fig. 1b, which consists of Commsignia
OBU kit [7] and a V2X OBU car antenna. Both Commsignia kits are
powered by Qualcomm C-V2X 9150 radio [8] running 3GPP Release
14 C-V2X standard. In addition, we have also installed a LTE router
and Linux-based edge computing servers which collocate with the RSU
module to facilitate our future studies on the edge-based data fusion
applications. The entire RSU module, including the edge computing
servers, are powered solely by solar panels and a portable battery for
the purpose of establishing a green communication and computing
environment.

B. Parameter Configurations
In this work, we focus on studying the characteristics of C-

V2X channels under different configurations of the following two
configurable parameters: MCS and packet size.

1) Modulation and Coding Scheme: MCS determines the
number of bits that can be transmitted within one resource block. The
MCS configuration and corresponding Transport Block Size (TBS)
of 3GPP release 14 C-V2X standard is determined based on Table
7.1.7.2.1-1 in 3GPP TS 36.213 document [9]. Higher MCS index allows
higher value of TBS, reducing packet transmission time. However,
higher MCS index is more vulnerable to channel noise and interference.
In this work, we use MCS index up to 17, which is the maximum
MCS index available for Commsignia RSU and OBU.

2) Packet Size: Packet size is another critical configurable
parameter which determines the performance of C-V2X channels.
In this study, we transmit packets following the WSMP, which is a
common protocol used in Wireless Access for Vehicular Environment
(WAVE) [10]. Based on our observation during exploring the C-V2X
testbed, we found that higher packet size is more vulnerable to packet
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loss when the C-V2X channel condition is degraded. However, lower
packet size induces more transmission overhead due to its fixed header
size as it requires sending more packets for a given size of fusion data.
We will discuss in detail in Section IV.

C. Data Collection
The results presented in the following sections in this work are

based on real world data that we recorded using our C-V2X testbed
on the UCSD campus. We focus on characterizing the following QoS
metrics: the packet transmission delay and packet loss rate (as packets
are broadcasted over Sidelink with no link-level recovery mechanism).
The packet transmission delay is measured by sending WSMP packets
between OBU and RSU multiple times and averaging the observed
delay. To collect the packet loss rate data, we placed the OBU inside
of our research vehicle with the corresponding antenna placed on the
top of the vehicle as shown in Fig. 1b. After we begin transmitting
WSMP packets from the OBU, the vehicle was then driven along a
road segment besides the RSU from one end of the RSU’s range to
the other. The road segment is shown by the cyan dash line in Fig.
2. The packet loss rate is measured by recording how many packets
are successfully received at the RSU. During the data recording, the
vehicle is driven at as close to a constant speed ranging from 10 to
40 miles per hour (mph) as possible, while still adhering to the traffic
laws and traffics along the route. This drive was repeated two times
in each direction on the road for each of the different combinations
of MCS and packet size configurations.

D. C-V2X Characterization: Packet Level QoS
Fig. 3 shows the QoS characteristic of C-V2X with respect to MCS

index ranges from 0 to 17, and packet size setting ranges from 0.1
to 1.4 KB. The QoS characteristics studied in this work are packet
transmission delay and packet loss rate. Because packets are transmitted
by the broadcast mechanism in C-V2X Sidelink, packet loss rate is a
critical factor to effective link rate besides packet transmission delay.

Fig. 3a shows transmission delay performance, where higher MCS
value leads to lower delay. The observed effect is strongest at large
packet size regions. On the other hand, for lower MCS value, delay
increases with the packet size. But similarly it is not obvious for high
MCS values. On the other hand, Fig. 3b shows the packet loss rate
characteristic, where we can see that higher MCS and higher packet
size lead to high packet loss rate. But it is worth noting that packet loss
rate varies significantly at different locations and speeds. For example,
we measure the packet loss rate characteristic at the same location
with different speeds, with 10 mph shown by the red dot and 20 mph
shown by the yellow dot in Fig. 3b. Although these two dots are very
close to each other, the resulting packet loss rate varies with different
speeds.

III. REALIZING RGB SENSOR SHARING OVER C-V2X
Although current C-V2X Sidelink protocol is designed for BSMs,

the characteristics shown in Fig. 3 present an opportunity for sharing
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data of vehicular fusion applications if we can keep the delay and
packet loss rate performance as low and stable as possible. In this
work, we use uploading data collected by the RGB sensors, namely
the on-board cameras, as an example to demonstrate the feasiblity
of using C-V2X channel for fusion data sharing. We plan to send
the camera captured image using the WSMP packets. However, the
image size is usually larger than the maximum WSMP packet size
allowed by the commercial Commsignia’s RSU and OBU devices.
Therefore, we have implemented a WSMP packet-based end-to-end
image transmitting application on our testbed, as shown in Fig. 4.

We first read the binary file of an image as a character array and
chunk the array into equal length segments. Each segment is put into
the payload of a WSMP packet before being sent out by OBU. The
total number of segments and the index of the current segment is
saved in the header of each WSMP packet. After the RSU receives the
packets, it combines the payloads according to the segment number
and indices indicated in the header and saves the resulting array as
an image. Therefore, the transmission of an image frame includes the
transmission of multiple WSMP packets, with the required number of
packets depending on the WSMP packet and image size. In addition,
the transmission delay for sending a frame will include the delay
for sending multiple WSMP packets for this frame. Although this
end-to-end application provides a direct way to send image data using
the existing WSMP packets without changing the current C-V2X data
transmission mechanism, it is sensitive to packet loss if there is no
retransmission control for the lost packets; even losing a single packet
from an image frame results in significant corruption to the image.

Therefore, when the camera fusion data is sent over the C-V2X
channel, the frame level QoS need to be carefully considered and
optimized, which includes frame transmission delay and frame level
loss rate. In the following section, we will demonstrate a link adaption
policy to maximize a utility metric (e.g. frame goodput) by changing
the MCS and WSMP packet size configurations of the OBU based on
the current estimation of frame transmission delay and loss rate.

IV. LINK ADAPTATION FROM SIDE-CHANNEL INFO

The primary design constraint for C-V2X is the broadcast trans-
mission of basic safety messages. As a result, there is essentially no
ability to adapt transmission parameters to current link quality and
instead these parameters are often updated in relation to vehicle speed,
to combat doppler effects, or geographic location, to comply with local
regulations. More traditional communications (i.e. WiFi or cellular)
typically provide feedback on channel state that allows the sender
to adapt their MCS to greatly increase the spectral efficiency, and
therefore link rate, that can be achieved. The question we seek to
answer in this section is how can we add this link adaptation capability
to C-V2X without the need to change the underlying protocol to provide
feedback?

There is a growing trend of utilizing the so called side-channel
or out-of-band information for optimizing communications; these are

catch-all terms to describe information that is obtained from outside
the communications link. The systems employing radios are often
sensor-rich and more holistic integration offers optimizations that
aren’t possible to do on the radio alone. In the current work, we utilize
vehicle location and speed - two variables that are highly predictive of
channel quality while being easily obtainable on a vehicle. While there
can be some generalizable relationships between these parameters and
channel quality (e.g. longer distance links have lower Signal-to-Noise
Ratio (SNR) due to free space path loss), many important smaller scale
effects are site specific (e.g. a static Line of Sight (LoS) blockage
from foliage). Thus, we chose to pursue a DL based approach where
the methodology can still generalize to any site by simply re-training
on a new dataset collected at that location. This methodology is quite
simple, and robust, to implement and test, as we show in Section V,
however, it is unable to adapt to more dynamic challenges such as
network congestion or LoS blockage - we leave these challenges to
future work.

While many wireless communications techniques are often mostly
agnostic of the traffic they carry, the current work explores a tighter
integration between the application, transmitting image frames from
vehicle sensors, and the communications. This tight integration allows
for an additional degree of freedom in link optimization - how should
we fragment image frames into underlying packets for transmission?
As shown in Fig. 3, smaller packet sizes result in higher reliability, but
can potentially induce higher frame transmission delay (as there are
more packets to transmit for a given frame and more overhead from
headers at various levels); thus there is a clear trade space between
lowering frame transmission delay while ensuring the frame is actually
able to arrive reliably.

This section first provides the details of how the current work
utilizes side-channel information for predicting the packet loss that
will be exhibited for specific MCS and packet size actions and then
provides our rudimentary capability of estimating frame delay from the
actions alone. The section then concludes with a description of how this
predictive capability can be included into a policy that performs link
adaptation to satisfy arbitrary QoS constraints (e.g. frame reliability,
frame latency, etc.) while maximizing an utility metric (e.g. frame
goodput).

A. Estimating Packet Loss Rate

The goal of this section is to predict the packet loss rate, r, that
would be observed in the current state, the location coordinates denoted
as llat and llng and the velocity vector denoted as v, if the radio is
configured to take a specific action, where the MCS is denoted as m
and packet size is denoted as p. Put more formally, the current work
models the following equation

r̂ = f(llat, llng, v,︸ ︷︷ ︸
“State”

m, p︸︷︷︸
“Action”

; θ) (1)
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Fig. 5: Deep neural network architecture used for predicting packet loss rate.

using a deep neural network where the parameters, θ, are learned
through stochastic gradient descent to model the roadway scene
of interest. A prediction of the packet loss rate, can be implicitly
transformed into a prediction for the frame loss rate through the
following expression:

r̂frame = 1− (1− r̂)n (2)

where n denotes the number of packets needed to transmit the entire
frame after fragmentation. Note that (2) implies, as was discussed in
Section III, that successfully receiving a frame requires that all of the
underlying fragments were successfully received to avoid corrupted
images.

The specific network architecture used is outlined in Fig. 5. It is
a simple feed-forward neural network consisting of five layers with
256 neurons each1, except for the output layer which contains a single
neuron as only one variable is being predicted. All layers, except for
the output layer, are followed by the ReLU non-linearity and batch
normalization. Each of the inputs are also normalized to zero-mean,
unit-variance, as is standard practice. Mean squared error is used as
the loss function and Adam as the optimizer. The model was trained
for 100 epochs, with a batch size of 512, and a learning rate of 1e−3.
The randomly sampled training-test sets were split 80-20, consisting
of ≈ 2.6M and ≈ 660k examples respectively.

The model is able to achieve nearly perfect results on the collected
dataset, as shown in Fig. 6, and indicated by its achievement of an
R2 value of 0.99 on the test set. Putting this into more intuitively
interpretable terms, the model has less than 4.9% absolute error on
90% of the test set.

B. Estimating Frame Delay
End-to-end packet delay in wireless communications is affected

by a slew of different variables, which are typically simplified to the
following: i) transmission delay, ii) propagation delay, iii) processing
delay, and iv) queuing delay. Transmission delay, or the time needed to
put the packet onto the link, is modeled entirely (under the assumption
of constant bandwidth) by the MCS and packet size used - the action
variables already utilized in Fig. 5. Propagation delay, or the time
needed for the signal to travel from sender to receiver, would be
modeled (in LoS conditions) entirely by the distance between the two

1A smaller network with three layers and only 64 neurons per layer was
also evaluated. As there was, unsurprisingly, a small performance loss and
DL models are becoming increasingly computationally cheap due to hardware
accelerators, the current work only discusses the larger (but still minuscule
compared to state-of-the-art models in other domains) model for brevity.
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radios - this can be easily extracted from the state variables already
utilized in Fig. 5. However, C-V2X only utilizes very short range links
making this propagation delay exceptionally small compared with total
observed latency; thus, the current work chooses to omit modeling it
which greatly simplifies the problem of predicting packet delay. While
the current work cannot bisect the final two, processing and queuing
delay, from one another it is nearly certain that the queuing delay is
the dominant source of delay in C-V2X.

Queuing delay is state dependent; recent packets queued within
the radio along with current network congestion can each impact it.
To handle the former, the current work chose to instead model the
frame level delay2, in which a single image frame is fragmented into
multiple WSMP packets (as described in Section III), and the delay
is characterized as the time from when the first fragment is sent to
when the last fragment is received. As previously mentioned, the latter
factor, network congestion, is important, but not modeled in the current
work’s experimental setup; furthermore, it is not observable given our
current decision making variables which we plan to address in future
work.

Given the constraints above, the delay can then be estimated
from a set of three parameters: MCS, WSMP packet size, and
frame size. As each parameter is discrete valued, the current work
chose to simply create a table of the mean values observed for
each parameter combination rather than unnecessarily complicate the
prediction problem with a DL model. Put more formally

d̂(m, p, s) = E[Dm,p,s] (3)

where Dm,p,s, is a random variable for the frame level delay following
an empirical probability distribution, Am,p,s. Am,p,s is defined as the
empirical distribution of all observed packet delays, d, in our dataset,
given that the specific MCS, m, packet size, p, and frame size, s,
were used during data collection. Fig. 7 shows an example of the
mean frame delay observed for varying MCS and packet sizes when
transmitting an image frame size of 6.5KB. As would be expected, as
MCS and packet size increases, the observed frame delay is decreased.

2It was initially surmised that characterizing individual packet level delay and
multiplying by the number of packets needed to be sent for any given image
frame size would provide a sufficient estimate (and is more generalizable).
However, the current work found that this significantly overestimated the frame
level delay, leading to pessimistic predictions.
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Fig. 7: Example table of the mean frame delay observed for specific MCS
values and packet sizes when the image frame size has been fixed to 6.5KB.

C. Predictive Link Adaptation for Arbitrary QoS Satisfaction
Given the predicted values of frame delivery rate and frame delay,

as were outlined in the prior sections, selecting the optimal MCS and
packet size becomes a simple search amongst the action space. The
methodology is outlined pictorially in Fig. 8 and textually described
in more detail below.

While the methodology presented could be generalized to optimize
for other metrics (e.g. minimize frame delay, maximize frame delivery
rate, or maximize a weighted utility of both, etc.), the primary criterion
used in the current work is the achievable frame rate, or more
colloquially, the goodput. Additionally, the application, or network
operator, is enabled to provide constraints on when the communication
should be attempted; a maximum frame delay or minimum frame
delivery rate can be specified to the optimization that ensures that any
service outage does not unnecessarily create congestion in the network
(i.e. utilize spectrum resources without satisfactorily completing a link).
In short, the link adaptation policy is the solution to the following
optimization problem:

argmax
m,p

s

d̂(m, p, s)
(1− r̂frame(llat, llng, v,m, p, s))

s.t. r̂(·) ≤ rthresh

d̂(·) ≤ dthresh

(4)

where the estimates for the frame loss rate, r̂frame, and frame delay, d̂,
are provided by (2) and (3) respectively.

V. PERFORMANCE EVALUATION

To evaluate the proposed link adaptation policy, we have established
a real-world trace-driven emulation framework. We then use this
framework to compare the goodput performance of the proposed link
adaptation policy with other static link configuration policies.

A. Real-world Trace-driven Emulation Framework
In the current real-world trace-driven emulation framework, we aim

at generating the result frame loss rate, frame transmission delay, and
hence the utility metric (e.g. frame goodput) for any given instance of
vehicle location, speed, and MCS and packet size configurations of the
C-V2X link. Note that frame goodput is defined as the optimization
objective of (4), but with r̂frame and d̂ being substituted by actual
observed frame loss rate and transmission delay, respectively, instead
of their predicted values.

Without loss of generality, in this evaluation we assume the frame
size to be transmitted is 6.5 KB. In one of our previous studies
[11], vehicular applications, like object detection, can achieve more
than 90% accuracy with this level of RGB image size. To generate
frame transmission delay, we transmit a 6.5 KB image from OBU to
RSU and record the transmission delay. The experiment is repeated
2000 times for every MCS and packet size actions and each frame

e.g. argmax
(𝑚,𝑝)∈Ω

𝑠

መ𝑑(𝑚, 𝑝, 𝑠)
∗ (1 − Ƹ𝑟frame(𝑙𝑙𝑎𝑡, 𝑙𝑙𝑛𝑔, 𝑣,𝑚, 𝑝, 𝑠))

Current location

(latitude 𝑙𝑙𝑎𝑡, longitude 𝑙𝑙𝑛𝑔)
Current Speed: 𝑣

User preferences 

(constraints, objectives)

Optimal action 

(MCS and packet size) 

Satisfy constraints?

e.g. መ𝑑(𝑚, 𝑝, 𝑠) ≤ 𝑑𝑡ℎ𝑟𝑒𝑠ℎ

PLR-Delay

Estimation Model𝑟𝑡ℎ𝑟𝑒𝑠ℎ, 𝑑𝑡ℎ𝑟𝑒𝑠ℎ

Frame size: 𝑠

𝑟𝑡ℎ𝑟𝑒𝑠ℎ , 𝑑𝑡ℎ𝑟𝑒𝑠ℎ

∀ MCS value, m

∀ Packet size, p

Ƹ𝑟frame(𝑙𝑙𝑎𝑡, 𝑙𝑙𝑛𝑔, 𝑣,𝑚, 𝑝, 𝑠), ∀𝑚, 𝑝

መ𝑑(𝑚, 𝑝, 𝑠), ∀𝑚, 𝑝
If ∄ 𝑚, 𝑝
satisfying 

constraints

action set Ω = 𝑚, 𝑝 s.t. constraints satisfied}

Don’t transmit

Fig. 8: MCS and packet size adaptation methodology

transmission delay is recorded. During emulation, the ground truth
frame transmission delay is generated by picking a delay value
uniformly at random among the recorded delays of the experiment
which corresponds to the actual MCS and packet size actions.

While our packet loss rate estimation model and proposed link
adaption policy apply to different vehicle speed conditions, we chose
to fix the vehicle speed as close to 10 mph as possible in this emulation
framework. For this purpose, we chose the road segment shown by
the red line in Fig. 2 as our test drive path as the vehicle speed is
more consistent within this segment. The GPS coordinates and speed
along this drive path is picked from one of our data collection drives
described in Section II, with 10 mph driving speed. The ground truth
packet loss rates associated to any given GPS coordinates and speed
instance above, for different MCS and packet size actions, are derived
from the dataset we collected; converting from packet to frame loss
rate is done through (2).

Then we use the proposed link adaptation policy to estimate the
frame delay and frame loss rate, and pick the MCS and packet size
actions. The decisions might not necessarily be optimal for each
temporal data point due to the estimation deviation. Therefore, we
will compare the our policy with the optimal policy which adapts the
MCS and packet size actions based on the ground truth knowledge.
For comparison, we also provide frame goodput performance of fixed
configuration policies (i.e. the MCS and packet size actions will not
change for adaptation). These policies are keeping 1) 17 MCS, 1.4
KB packet size, 2) 0 MCS, 1.4KB packet size, and 3) 5 MCS and 0.7
KB packet size.

B. Experiment Result

Fig. 9a shows in temporal domain the result goodput of each policies
and their corresponding MCS and packet size actions, where the purple
dash line is the proposed link adaption policy and green line is the
optimal result, which is obtained by assuming OBU has the knowledge
of actual packet loss rate and transmission delay. Blue, red, and yellow
dot lines are for the fixed configuration policies. The x-axis includes
the indices of time points of the whole drive on the chosen segment,
the interval between each point is 10 ms.

Among the fixed configuration policies, 0 MCS and 1.4KB packet
size performs the best and can achieve around 20 fps goodput most of
the time. However, with link adaption, the proposed policy achieves
even higher goodput than the fixed configuration policies. As shown
in Fig. 9b and 9c, the MCS and packet size actions chosen by the
proposed policy changes across time. Therefore the corresponding
goodput is higher than the fixed configuration policies as long as the
estimation of frame delay and packet size are precise. Note that the
goodput of the optimal policy is always higher than the proposed
policy because its adaption is based on precise estimation of frame
delay and packet loss rate.
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Fig. 9: The temporal emulation result under different link adaption
policies of (a) goodput result, (b) MCS actions, and (c) packet size
actions

Furthermore, the proposed policy extends the length of period when
the link is able to achieve non-zero goodput, which means a few image
frames can still be sent out while fixed configurations are not able to
achieve the same. For example, among regions between timestamps
600 to 750, 1000 to 1200, and 1850 to 1950, while the goodput results
of all the fixed policies are effectively zero, the proposed adaptation
policy still keeps high goodput by adapting to other MCS and packet
size actions.

Fig. 10 shows the cumulative distribution function (cdf) of goodput
across all time point for each policy and the corresponding average
goodput. For example, the proposed policy outperforms the best fixed
configuration policy by 28% and the cdf also shows that given for any
goodput milestone below 30 fps, the proposed policy will always have
more time points achieving that milestone than other fixed configuration
policies.

Note that there are two dead zones in Fig. 9a, i.e. regions between
timestamps 750 to 1000 and 1750 to 1850, which were respectively
taken place when the vehicle was at the bottom of the hill and when
the vehicle was right underneath the RSU antennas. The link would
not support any transmission in these two zones. The performance
optimization within these regions is beyond the scope of link adaptation.
Further tuning of C-V2X radio interface, or adopting other data
transmission policies are required. We will leave this as future work.

VI. CONCLUSION

In this paper, we have established a C-V2X testbed and demonstrated
that C-V2X Sidelink can be used beyond just transmitting BSMs. We
have shown an intelligent way to achieve this over broadcast channel
without explicit coordination between RSU and OBU. By leveraging
the prediction of frame delay and delivery rate, the proposed link
adaption methodology does not require feedback information from RSU.
Therefore, if the vehicle is capable of measuring its location, speed,
and data size, this link adaptation methodology can be implemented
on OBU, without any modification to the current protocol, like the
fixed configuration policies.

The proposed predictive link adaption strategy dynamically changes
MCS and packet size configuration and demonstrates a more than
28% improvement of average goodput compared to fixed configuration
policies over real-world trace-driven emulations. For future work, we
plan to expand current site-specific QoS estimation method to a general

Fig. 10: Cumulative distribution function of goodput result using different
adaption policies.

model using online and unsupervised learning techniques, so that it can
be adapt to more dynamic changes like network congestion and LoS
blockage. Additionally, we will study the solutions for the transmission
of fusion data to adapt to the dead zones as shown in Fig.9a.
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