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ABSTRACT Enterprise knowledge workers have been overwhelmed by the growing rate of incoming data
in recent years. In this paper, we present a recommendation system with the goal of helping knowledge
workers in discovering useful new content. In particular, our system builds personalized user models based
on file activities on enterprise network file servers. Our models use novel features that are derived from file
metadata and user collaboration. Through extensive evaluation on real-world enterprise data, we demonstrate
the effectiveness of our system with high precision and recall values. Unfortunately, our experiments reveal
that per-user models are unable to handle heavy workloads. To address this limitation, we propose a novel
optimization technique, active feature-based model selection, that predicts the user models that should be
applied on each test file. Such a technique can reduce the classification time per file by as much as 23 times
without sacrificing accuracy. We also show how this technique can be extended to improve the scalability
exponentially at marginal cost of prediction accuracy, e.g., we can gain 169 times faster performance on an
average across all shares by sacrificing 4% of F-score.

INDEX TERMS Information retrieval, machine learning, enterprise, file systems.

I. INTRODUCTION
The amount of data created, replicated and consumed every
year has been growing exponentially over the years [1].
Between 2010 and 2020, the digital data is expected to grow
by 50 times [2]. Following a similar trend, enterprise data
was projected to increase by 76% within the last one and half
years [2]. The tremendous growth of data has become one of
the biggest challenges for enterprises. It places unreasonable
burden on enterprise users or knowledge workers. Studies [1]
have shown that nearly 65% of knowledge workers report
feeling overwhelmed by the incoming data. The situation is
further exacerbated by the fact that the enterprise data resides
across heterogeneous devices and environments, including
network file servers, source control repositories, emails and
file servers, cloud applications [3], [4], and enterprise social
networks [5]. This makes finding relevant content a very
challenging task for knowledge workers.

In this paper, we present a system that assists
knowledge workers to discover relevant new content by pro-
viding personalized recommendations. In order to serve these

recommendations, our system monitors user activity over a
training period and trains per-user access models. Although
our approach currently focuses on files on networked file
servers (shares), it could potentially be applied to other types
of data as well. For training user models, we extract inter-
esting metadata features based on file path and hierarchical
directory structure. In our experiments, we observe that many
enterprise users show a high degree of collaboration, which
is inferred based on their common file accesses. To leverage
user collaboration, we propose a collaborative filtering aware
modeling approach that provides significant improvement
over metadata-based models. Our evaluation uses activity
logs from eight different shares of an enterprise customer.
We measure the effectiveness of our system in providing
predictions for files that are new with respect to the training
data. Our experiments show that the metadata-based models
can achieve an average recall of nearly 50% at 75% precision
across all shares and users. Our collaborative filtering-based
approach remarkably improves the same recall of nearly 50%
at 75% precision to over 70%.
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Although effective, per user models are not at all effi-
cient in terms of the runtime performance of testing. This is
because every file that is created or modified in a share needs
to be tested against the model of each user in the share. This
could be computationally very expensive especially for heavy
workloads with a large number of users. For instance, for
handling a heavy workload (i.e., activity involving high file
edit rate) in our experiments, our system will need 48 64-core
machines to test all edited files. The high computational and
financial cost poses a severe constraint that could adversely
affect the adoption of our system. To address this issue,
we propose a novel technique, called Active Features-based
Model Selection (AFMS), that automatically selects only
those user models that are highly likely to generate positive
predictions, while ignoring the models that will definitely
or most likely generate negative predictions. Thus using this
technique, a test file is tested against only the selectedmodels,
thereby speeding up the overall testing time. Our experiments
show that AFMS drastically reduces testing time without any
loss in the prediction accuracy. Furthermore, we show that
AFMS can be used adaptively to trade-offmarginal prediction
accuracy for significant performance gains during the periods
of heavy workload.

Our previous version [6] of this work presented the basic
technique for modeling file accesses. This paper presents a
new technique, AFMS, for improving solubility, along with
new experiments and insights. The main contributions of our
work are the following:

1) Propose a system to analyze user file accesses in order
to train personalized models, and recommend relevant
content with a high degree of accuracy

2) Propose a novel model selection technique that can
speed up the testing time by more than 6 times on
average, and by over 23 times in the best case without
any loss in the prediction accuracy

3) Extend the model selection technique to speed up the
testing time significantly at the cost of marginal loss in
the prediction accuracy

4) Demonstrate practicality of our system using a system-
atic study and evaluation based on real world enterprise
data

II. RELATED WORK
Several previous approaches have addressed the topic of file
access prediction, but with the goal of improving the I/O per-
formance of storage systems [7]–[14]. They aim at reducing
the widening gap between CPU and disk storage performance
by prefetching files to the cache memory. There are a couple
of key differences between our approach and the previous
ones. Such approaches are focused on modeling accesses pat-
terns that are generated by automated activities, whereas our
focus is on activities that are manually initiated by physical
users. This allows us to consider certain features that could
be prohibitively expensive for caching applications. None of
the previous approachesmake predictions for completely new
content. On the other hand, by leveraging innovative features

derived from metadata and user collaborations, our approach
can make fairly good predictions for new content. In fact, our
goal is to be able to discover useful new content, which could
be present in new or modified files.

The approach from Song et al. [15] is closest to ours in
terms of providing recommendations to knowledge work-
ers. This approach infers abstract tasks and frequently used
workflow patterns from historical user activity. It then makes
recommendations based on the workflows that match current
activities of the user. Although this approach extends beyond
simple file matching, it cannot make predictions for new
content.

In terms of features, our approach is significantly different
from any of the previous approaches. Our features are derived
from rich file metadata, including file name, path, extension,
and file system hierarchy. These features allow our system
to compare new file activities to the learned activities in
the past in terms of similarity in the metadata attributes.
More importantly, our system leverages metadata features to
automatically generate features for collaborative filtering in
a novel way so as to address the cold start problem (i.e.,
inability to provide recommendation for new content). In that
respect, our approach is better than the traditional collabora-
tive filtering approaches [16], [17] because they suffer from
the cold-start problem.

Lastly, advanced machine learning models, e.g., factoriza-
tion machines [18], topic models [19], [20], and deep neural
networks [21], [22], could be used to model access patterns.
However, these techniques are complementary and can be
applied to make our system more effective. Nonetheless,
we demonstrate that simple linear Support Vector Machine
(SVM) model can be effectively used to build a practical
system. Most importantly, it allows us to develop the opti-
mization technique AFMS for significantly reducing the clas-
sification time and improving the scalability of our system.
This technique, in addition to the basic modeling, and the
scalability optimization approach, constitutes a novel contri-
bution of our research.

III. THE FILE RECOMMENDATION SYSTEM
Our system uses a binary classification approach for pro-
viding file recommendations. For this purpose, it builds a
separate classification model for each user of a file share. The
dataset of a given user includes all the files that have been
accessed by all users of the share. The label of a file in the
dataset is 1 if the user accesses it, 0 otherwise. It is important
to know that if a user accesses a particular file during the
training phase, it is highly likely that the user will access the
same file during the testing phase. Recommending such a file
to the user is not very useful. Hence the main objective of
our system is to discover useful but new files that may have
been created or modified by other users of the same share.
For this reason, the testing phase includes only those files
that are new with respect to the training phase for the user.
Our system then applies the model of the user to these files to
predict classification labels. The rest of this section describes
the features and the modeling techniques used in the system.
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A. METADATA FEATURES
The metadata features include features extracted from differ-
ent attributes of a file:
• Folder: We create a folder feature corresponding to

every folder and its ancestor folders observed in the
training period.1 For a file f , we capture the folder
features as a binary vector with the value 1 in the loca-
tions corresponding to the folder or the ancestor folders
of f , and 0 elsewhere. These features help in learning a
user’s preference for certain subtrees of the file system
hierarchy in a share without having to define a folder
distance metric.

• Token: We tokenize the path name of each file using
a novel tokenization approach, the details of which can
be found in [6]. We construct a token vocabulary using
all the tokens observed during the training phase. For
extracting features, we capture tokens of a file as bag-
of-words representation on the entire vocabulary.

• Extension: We construct an extension vocabulary based
on the popular extensions observed in the training data.
We then use this vocabulary to represent a file’s exten-
sion with one-hot encoding based features

B. MODELING TECHNIQUES
We first build basic metadata models based on the metadata
features. Using these models, we then develop an innovative
approach to leverage collaboration among users for building
collaborative filtering aware models that provide better
performance over the basic metadata models.

1) METADATA-BASED MODELING
For each user, we train a metadata model using the metadata
features. Figure 1 (a, b) shows the training and the testing
phases of this approach. Considering the trade-off between
accuracy and training time efficiency [6], we pick Support
Vector Machine (SVM) with a linear kernel as our mod-
eling technique because it provides high accuracy without
incurring significant training time. More importantly, a lin-
ear SVM provides feature weights that capture the relative
significance of individual features. We leverage this aspect in
our scalability optimization technique AFMS as described in
Section VI.

2) COLLABORATIVE FILTERING (CF)-BASED MODELING
Enterprise users often show a high degree of collaboration
in terms of accessing common files in a share. We make
this observation based on the measurement of the metric,
normalized triangle count (Section IV-A), that captures the
degree of collaboration among users. As an illustration, see
Figure 2 that shows user communities in terms of social
network graphs for a couple of shares.

We leverage user collaborations to build CF models that
are significantly more effective than the metadata models.

1Please note that no features are derived for completely new attributes seen
only during the testing phase.

FIGURE 1. Approach Overview. (a) Training: metadata models for each
user. (b) Testing: apply the trained models for all users in share. (c)
Training: CF models for each user.

Here are the details of themethod used in building a CFmodel
for a user u. First, we divide the original training set into a new
training set and a validation set. We then use the new training
set to train a metadata model for each user. Second, for each
file in the validation set, we apply the metadata models of
all the users, and generate a vector of the resulting predicted
labels. Third, we train the CF model for the user u using the
files in the validation set. For this, we construct the feature
vector for each validation file by concatenating the metadata
features with the vector of the predicted labels (Figure 1(c)).
For each test file observed during the testing phase, we first
apply the metadata models of all the users to generate a vector
of the predicted labels. Finally, we append this vector to the
metadata features to create a new feature vector and feed it to
the user u’s CF model to obtain the final predicted label.
An interesting point to be noted here is that our CF-based

modeling technique does not require a pre-defined user-user
relationship or even a user similarity metric. Rather, the
model can automatically learn positive or negative correlation
between the activities of users, and accordingly adapt to make
better predictions. For instance, if two users have similar
access patterns, the CF model for one user could learn that
its labels positively correlate with labels predicted by the
other user’s metadata model. Thus, greater the degree of
collaboration, the better will be the effectiveness of the CF
models. Another benefit of our technique is that, unlike pure
collaborative filtering-based systems developed in the past, it
does not suffer from a cold-start problem. Previous systems
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FIGURE 2. Social network graphs for shares show that users collaborate and tend to form communities by accessing
common files. In these graphs, each node corresponds to a user, and an edge connects two users when the Jaccard index
of common files accessed by those users is above 0.5. (a) Share B. (b) Share D.

TABLE 1. Statistics of shares used for evaluation.

recommend an item to a user if other similar users have
shown a preference for that item. Therefore, these systems are
incapable of recommending a completely new item because
no other user has seen it before. In contrast, the novelty of our
technique is in using CF features that are based on predicted
labels rather than the history of past accesses.

IV. EVALUATION FRAMEWORK
This section describes the evaluation data and methodology.

A. DATA
We use file activity logs from eight network file shares of
an enterprise customer for evaluation. Table 1 provides key
statistics of this data. Because our recommendation system
targets user collaborations, we select shares from 90th per-
centile in terms of triangle count – a metric to capture degree
of collaboration among users. Triangle count for a share
is the number of triangles formed, where a triangle edge
corresponds to a connection between two users based on
accessing at least one common file [6]. The table shows the
triangle count values normalized with respect the number
of files.
Removal of Automated Activity: We observe two types

of file activities in our data. The first corresponds to the

activities that are manually initiated by users. These activities
are characterized by a low number of file operations per
hour. The second corresponds to scripted activities that are
performed by automated computer programs or scripts. These
activities are generally seen as bursts or exceptionally high
number of file operations per hour. Since our goal is to assist
knowledge workers and not automated programs, we need to
remove the scripted activity from the evaluation data. For this
purpose, we remove the activities by a user in an hours if the
number of activities are determined to be exceptionally high.
Towards this, an appropriate threshold is determined using
Tukey’s outlier factor [23].
Selection of Evaluation Users: Since our system helps

users discover new or modified content, it is primar-
ily targeted for active users. Therefore, for each share,
we sample 30 users from the highest quartile of users
in terms of number of activities, and use them in our
evaluation.

B. EVALUATION METHODOLOGY
We experiment with different training and testing periods
to evaluate the performance of our system under different
settings.
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FIGURE 3. Splitting dataset into various training and testing periods.
(a) Vary training periods. (b) Vary testing periods.

1) VARYING TRAINING AND TEST PERIODS
We divide the total duration of data from each share into
several slices and create training and testing periods such that
testing occurs immediately after training. For consistency,
each share is divided into seven slices and five training and
five testing periods are created as shown in Figure 3. We per-
form experiments with different combinations:
• Fix testing, vary training. A longer training window

has more number of activities, thereby allowing better
model training. However the activities become older
as the distance between them and the testing period
increases, thus preventing the model from reflecting the
latest user patterns accurately. On the other hand, a small
training window has less number of activities, but these
activities are relatively fresh. Thus, there exists a trade-
off between the size and the recency of the training data.
We study this trade-off by varying the training duration,
while keeping the testing period fixed.

• Fix training, vary testing. As a user’s behavior evolves
over time, it is expected that the effectiveness of
the user’s model would degrade as the testing period
becomes longer. We can measure the robustness of a
model by observing the rate of degradation. With this
goal, we experiment with varying testing periods, while
keeping the training period fixed.

2) EVALUATION METRICS
Consider an experiment with a certain combination of train-
ing and testing periods for a user u. Let Ftrue+,u denote
the set of files that u accessed in the testing period, and
Fpred+,u denote the set of files predicted by u’s model. Then
the precision and the recall of the model respectively are
|Ftrue+,u∩Fpred+,u|
|Fpred+,u|

, and |Ftrue+,u∩Fpred+,u|
|Ftrue+,u|

. We use the following
metrics to evaluate the effectiveness of the model.
• F-score: The F-score for a model is the harmonic mean

of the precision and the recall, and provides a balanced
picture of the model’s effectiveness.

• Recall@75P: In practice, it is important for a recom-
mendation system to have high precision because a large
number of false positives may discourage a user from
using the system altogether. Therefore, we addition-
ally measure the recall values when the precision is
high – 75%. This is achieved with the help of confidence
scores associated with the predicted labels.

The measurements for F-score and Recall@75P are averaged
across all the evaluation users to obtain AF and AR@75P
respectively. For each share, we report the average and the
maximum values of AF and AR@75P across the results
over all combinations of training and testing periods. Please
note that the maximum values provide realistic performance
estimate of a properly tuned system.

V. PERFORMANCE EVALUATION
We evaluate our system using the Python-based scikit-
learn library [24]. We train models on a 32 core, 64GB,
2.6GHz machine, and conduct testing on a separate 8 core,
32GB, 2.7GHz machine, leveraging multiple cores with
multiprocessing. We use 3-fold cross-validation to learn the
regularization parameter C for the linear SVM models by
varying C over {10−2, 10−1, 1, 101, 102, 103}.

A. METADATA MODELS
Table 2 shows performance results of the metadata models.
The numbers in column Max AR@75P are reasonable per-
formance estimate of a well tuned system. The average of
these numbers across all the shares, 49.4%, shows that our
metadata models can capture nearly half of users’ access for
new files, while having under 25% wrong file recommen-
dations. This demonstrates the effectiveness of the trained
models. It should be noted that the performance of our system
shows a significant variation across different shares owing to
differences in rates of changes of file access patterns across
the shares.

We would like to point out that our dataset includes an
undesirable case where during the testing phase, a user
accesses a new file that was recently created by the same
user. Since recommending such a file to the user is not useful,
we measure their proportion in our recommendations. The
last column of Table 2 shows that most of the correctly
recommended files do not fall in the above category, thereby
upholding the validity of our models.

B. CF MODELS
We experimented with different strategies to sample valida-
tion files for training CF models. We use the strategy that
provides the best performance, which is using the training
set itself as the validation set. The results in Table 3 clearly
highlight the significant gains of CF models over metadata
models. The average of Max AR@75P across all shares
is 70.2%, which is an improvement of a whopping 20% over
the performance of metadata models. Also, it is not very
surprising that the top four shares, B, D, E, and G, in terms
of gains of the CF model, are found in the top five shares
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TABLE 2. Performance summary for metadata models. Performance numbers are averaged over 5 iterations with random initialization of the linear
SVM model training. Numbers are listed along with the standard deviations.

TABLE 3. Performance summary for CF models. Performance numbers are averaged over 5 iterations with random initialization of the linear SVM model
training. Numbers are listed along with the standard deviations.

in terms of normalized triangle counts. Share A, which is
the remaining share in the top five, doesn’t show substantial
improvement primarily because the performance of its meta-
data model is already too high.

C. TEMPORAL VARIATION IN PERFORMANCE
To study the performance variations for different lengths of
training and testing periods, we focus only on the metadata
models because as compared to CF models, they provide
larger variation owing to lower baseline performance.

FIGURE 4. AF for metadata models with the fixed testing and varying
training periods.

1) VARYING TRAINING PERIOD
Figures 4 and 5 show the performance variation of metadata
models with varying training periods. The best performance
for most shares is observed for index 1 that corresponds to
the longest training period. As expected, the performance
degrades as the training window shrinks. Performance can
also degrade for a large training window wherein a model
gives importance to activities that are outdated with respect to
the user’s recent access pattern. However, we don’t observe
this behavior because the longest training periods, ranging
from 41 to 88 days for the eight shares, are not long enough
to cause the degradation.

FIGURE 5. AR@75P for metadata models with the fixed testing and
varying training periods.

FIGURE 6. AF for metadata models with the fixed training and varying
test periods.

2) VARYING TESTING PERIOD
Figures 6 and 7 show the performance variation of metadata
models with varying testing periods. Beyond the testing peri-
ods with indices 1 and 2 which are the smallest and hence
potentially the noisiest, the performance degrades mildly as
the testing window widens. This is an excellent indicator of
the robustness of our models.

Next, we perform a thorough study of the effect of training
window size on the performance of the models of individual
users. For this purpose, we select share D, and divide its data
into 17 parts, each corresponding to one week. We remove
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FIGURE 7. AR@75P for metadata models with the fixed training and
varying test periods.

4 out of 30 users because they do not have sufficient activity
in each week. We then pick the last five weeks for the testing
period, and create 12 different training windows, varying
from 1 week to 12 weeks. Based on the results, we plot
(Figure 8) the distribution of the optimal training window size
(in terms the least number of weeks) providing the highest
F-score for the evaluation users of share D. The median and
the mode of this window is 8 weeks even though there are
longer training windows up to 12 weeks, thereby confirming
our previous assertion that more training data does not nec-
essarily translate into better performance. Additionally, we
observe that the optimal window size varies for each user.
The most active user (with highest activity count) requires
4 weeks, whereas the least active user requires 11 weeks. This
suggests that the optimal window also depends on workload,
with more active users requiring lesser training time.

FIGURE 8. Distribution of the least number of weeks for each user of
share D that gives highest F-score.

In a practical deployment, we could use an online
evaluation approach to continuously tune the system based
on performance and workload characteristics. Lastly, it is
important to note that some of the recommended files, which
are flagged as false positives in our experiments, could in fact
be true positives in an actual deployment because users may
genuinely find them useful upon discovering them. Hence a
precision reported in this evaluation serves as the lower bound
for the precision expected from an actual deployment.

D. SCALABILITY
Unlike training, which is an offline process, classification
needs to be performed in real time. Therefore, we analyze
time and space complexities of only the testing, i.e., the
classification phase.

1) TIME COMPLEXITY
In an actual deployment, whenever a file is created or mod-
ified in a share, our system applies personalized models of

each user in the share. Therefore, the runtime performance
depends on the rate of file edit operations Redit (in files per
second) and the number of users N .
Let us compute the time taken to classify one file.

Let Tmeta_model and Tcf _model represent the average times
(in seconds) required to apply a metadata model, and a
CF model respectively. We need time Tmeta_feature seconds
to extract metadata features, and NTmeta_model seconds to
extract collaborative filtering features by applying the meta-
data model of each user. We then apply the CF model of
each user, which takes NTcf _model seconds. Thus, the total
classification time for one file is: Tmeta_feature+NTmeta_model+
NTcf _model seconds.
To make approximate calculations, we replace Tmeta_model

with Tcf _model and ignore Tmeta_feature because it is negli-
gible as compared to NTcf _model . Thus, it would take total
time of 2NTcf _modelRedit seconds to process all the files
edited in each second. Considering the sample values we
observed for some of the high workload shares: N = 16,000,
Redit = 5 files/second, Tcf _model = 19 × 10−3 second, the
total time would be 3040 seconds. Hence, in order to process
all the files created or modified per second, we would need
at least 48 64-core machines, with each core concurrently
performing classification.

Undoubtedly, the computational resources required to han-
dle this kind of workload would amount to a significant
financial cost to the enterprise. In the next section, we address
this problem by presenting an optimization technique that
substantially lowers the computational requirements without
sacrificing classification accuracy. With this improvement,
we need just one 64-core machine to manage the above
mentioned heavy workload.

2) SPACE COMPLEXITY
Unlike computation, memory requirements of our system are
quite modest even for heavy workloads. Considering values:
N = 16,000, Redit = 5 files/second, Fmeta = 35,000
(highest number of metadata features in our datasets), and
S = 4 bytes (size of value and weight of a feature), we
would need maximum (Fmeta + N )ReditS i.e., nearly 1MB
memory for all the features in the worst case. Note that the
features of a file remain the same for all the user models.
Each metadata model is represented by Fmeta weights, and
each CF model is represented by Fmeta + N weights. Thus,
the total memory to store metadata and CF models of all
the users is: (2Fmeta + N ) × NS i.e., approximately 5 GB.
In practice, the required memory would be much smaller
because collaborative filtering will be applied to a small
subset of users that show high degree of collaboration.

VI. ACTIVE FEATURES-BASED MODEL SELECTION (AFMS)
To speed up the classification time, our optimization tech-
nique AFMS leverages properties of a soft-margin linear
SVM model. In this model, the predicted label for a file f
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TABLE 4. Statistics for metadata models, averaged across 30 evaluation users and different training periods (Section IV-B.1), showing how AFMS is
effective.

is determined using the score:

g(f ) = w0 +

F∑
j=1

wj ∗ xj (1)

Here, F is the number of features, w0 is the intercept, wj is
the jth feature weight in the model, and xj is the value of the
jth feature of the file. The model predicts label 1 if g(f ) ≥ 0,
and 0 otherwise. Given that our features have non-negative
values, without applying the model we can predict label 0
when the following conditions are met:
• condition 1: The intercept is negative, i.e., w0 < 0, and
• condition 2: None of the weights of active (non-zero)

features is positive.
Under these conditions, g(f ) is always negative, and hence the
predicted label is 0. Otherwise, we need to apply the model
to obtain the classification label, which could be 0 or 1. The
AFMS technique uses this key intuition to save the cost of
applying classification models. Of course, its effectiveness
depends on the number of times the conditions are matched.
Unsurprisingly, as our experiments show, this happens quite
often (refer Table 4):
• condition 1: Around 96% of the metadata models

have negative intercept (i.e., w0 < 0). This is
because a typical user accesses only a small fraction
of files. Owing to this natural imbalance, the model
favors 0 as the prediction label, resulting in a negative
intercept.

• condition 2: Our data shows sparsity of features with an
average of only 2.2% of metadata features being active
(i.e., xj > 0) in the files. Also, the average ratio of the
features with positive weights (i.e., wj > 0) per model
is only 6.4%, and each of these features on an average
has a positive weight in less than 10% of the models.
The combination of these three facts significantly lowers
the probability of finding active features with positive
weights.

The favorable statistics result in matching the conditions
quite often, thereby leading to faster testing of files because
the cost of checking the conditions is negligible. Note that
faster testing of files is referred to as better performance in the
discussion below.While we have provided the above statistics
based on the metadata models, similar trends are observed for
CF models as well. Section VI-B shows the actual gains in
the performance for both metadata and CF models. The next
section describes the algorithm to implement AFMS.

A. AFMS ALGORITHM
Our technique extends the basic idea tomake the optimization
tunable so that it can potentially trade-off model correctness
for even better classification efficiency. In order to do so,
we define that a feature with index j triggers a model when
wj ≥ τ or w0 ≥ 0 where w0 and wj are the intercept and
the jth feature weight of the model respectively. Here, we
use the threshold parameter τ ≥ 0 to make the technique
tunable. Given a test file, a model would be applied on it if
any of the active features of the test file trigger the model.
For τ = 0, there is no loss of predictive correctness, and yet
there is performance gain due to the optimization. However,
as τ increases, fewer models are triggered, and hence there
is further improvement in the performance, albeit at the cost
of predictive correctness. With fewer models being applied,
there will be more number of 0 as the predicted labels, and
hence the recall is expected to degrade. However, precision
and likewise F-score can degrade or improve depending on
the correctness of the recommendations. Section VI-B shows
that we can gain significant efficiency at marginal cost of
model correctness. Furthermore, the technique can be made
adaptive by varying τ based on the rate of file edit operations
at a given time.

Please refer to Algorithm 1 to understand variable def-
initions, and the details of the algorithm. As part of pre-
processing, which is done right after the training phase, for
each feature we compute the set FTM (Feature Triggered
Models) consisting of models that are triggered by the feature
(Figure 9). For a share, the algorithm computes a separate
FTM for metadata and CF models.

The input to the classification procedure is the array
X [1 . . .Fmeta] of metadata features corresponding to the test
file. The procedure produces the outputs: an array L[1 . . .N ]
consisting of prediction label for each of the N users by
CF models, and an array Y [1 . . .N ] consisting of predic-
tion label by metadata models. The procedure initializes the
output arrays with 0 values as the default labels. It also
initializes setsM and C that are later used to collect triggered
metadata and CF models respectively. The first step obtains
the set of metadata models that are triggered by the
active features. The second step applies these metadata mod-
els to compute metadata predicted labels, which are also the
CF features Y . The third step appends the CF features to the
metadata features. The fourth step obtains the set of CF mod-
els that are triggered by the active features. Finally, the last
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Algorithm 1 AFMS Classification
Variables definitions:

N : Number of users
Fmeta : Number of metadata features
FCF : Number of features in CF models = Fmeta + N
wσ (i,j) : Weight of jth feature in ith user model, 1 ≤ i ≤ N , 1 ≤ j ≤ Fσ , σ ∈ {meta,CF}

Offline pre-processing to be done right after model training:

FTMσ (j) = {i | wσ (i,j) ≥ τ , or wσ (i,0) > 0}

Classification:

Input:
X = [x1, x2, . . . , xFmeta ] : Metadata feature vector of the test file f

Output:
Y = [y1, y2, . . . , yN ] : Predicted classification label (0 or 1) by metadata models for each user

L = [l1, l2, . . . , lN ] : Predicted classification label (0 or 1) by CF models for each user

Procedure:

M = C = {} \\initialize triggered metadata and CF models
for i = 1 to N : \\initialize CF features and output labels

Y [i] = L[i] = 0

for j = 1 to Fmeta: \\step1: obtain triggered metadata models
if (X [j]):

M = M ∪ FTMmeta(j)

for i in M : \\step2: compute CF features
Y [i] = ApplyMetadataModel(i, X )

X = [X ,Y ] \\step3: append CF features to metadata features

for j = 1 to FCF : \\step4: obtain triggered CF models
if (X [j]):

C = C ∪ FTMCF (j)

for i in C : \\step5: compute CF model labels
L[i] = ApplyCFModel(i, X )

step applies these CF models to compute the CF predicted
labels (L).

If a model is not applied, the default label 0 becomes the
predicted label, and the algorithm assigns a random negative
value as the confidence score for the label. We need the
confidence score because it is used to determine the relative
ranking of test files, which is then used in the computation
of recall at 75%. As a side effect, it is possible that AR@75P
for AFMS with τ = 0 may differ from AR@75P computed
without AFMS.

1) COMPLEXITY ANALYSIS
In AFMS classification procedure, steps 2 and 5 are the most
expensive ones, requiringO(N ) classifications. Thus, with the
rate of file edit operationRedit , the algorithm needs to perform
O(NRedit ) classifications. The optimization does not change

the worst case time complexity because it is possible that all
the models are triggered for a particular dataset. However,
given the presence of natural class imbalance in user-activity
datasets, our optimization significantly improves the average
case time complexity. For instance, with τ = 0.5, testing
of a single file on an average requires approximately 0.5
metadata- and 0.2 CF-based classifications out of 30 evalu-
ation users. This reduces the classification time of metadata
and CF models by 62 and 169 times respectively. The next
section provides detailed performance results.

B. AFMS EVALUATION
We measure the performance improvement using a simple
metric:

Speed-up =
# models applied without AFMS
# models applied with AFMS

. (2)
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FIGURE 9. AFMS technique first creates FTM in an offline manner. The
classification step applies only those models that are triggered
by active features.

Speed-up provides a direct estimate of reduction in classifi-
cation time.

FIGURE 10. Speed-up vs. τ for metadata models.

FIGURE 11. Speed-up vs. τ for CF models.

Figures 10-19 show the effect of τ on speed-up, and
various correctness metrics including average precision,
recall, and F-score. The numbers are averaged across all the
evaluation users, and all training and testing periods for
individual shares.

In general, we observe that speed-up increases exponen-
tially with respect to τ , whereas the correctness metrics
degrade almost linearly, with a mild slope, as τ increases.
This clearly shows that AFMS can obtain significant effi-
ciency at marginal cost of accuracy.

FIGURE 12. Precision vs. τ for metadata models.

FIGURE 13. Recall vs. τ for metadata models.

FIGURE 14. F-score vs. τ for metadata models.

FIGURE 15. Recall@75%Precision vs. τ for metadata models.

As expected, for τ = 0, AFMS does not lose accuracy, e.g.,
CF model Avg AF values from Table 3 and Figure 18 remain
the same for all shares. And yet, AFMS provides 4 times
average speed-up across all shares for metadata models,
and 6 times average speed-up for CF models. The speed-up
for τ = 0 is as high as 15 times and 23 times for share A
for metadata and CF models respectively. With τ = 0.5,
the average speed-up for metadata models is 62 times, and
for CF models is 169 times. The most gain is observed for
share A as 147 times for metadata models, and 280 times for
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FIGURE 16. Precision vs. τ for CF models.

FIGURE 17. Recall vs. τ for CF models.

FIGURE 18. F-score vs. τ for CF models.

FIGURE 19. Recall@75%Precision vs. τ for CF models.

CF models. However, this threshold affects the correctness,
dropping averages across shares. For example, for CF mod-
els, the Avg AF changed from 49.6% to 45.8%, Avg AR
from 48% to 33.3%, Avg AR@75P from 44.8% to 36.9%,
but slightly improving Avg AP from 38.9% to 42.5%.
These results confirm the expected effect as discussed in
Section VI-A.

VII. CONCLUSION
This paper presents a system to assist knowledge workers
in discovering useful new or modified content. The system
builds personalized user models using features derived from

filemetadata and user collaboration. Our experiments showed
that the basic modeling approach does not scale well under
heavy workloads. To address this problem, we developed
a novel optimization technique that improves runtime per-
formance without sacrificing prediction accuracy. We also
showed how the technique can be adapted to improve the
performance significantly at marginal cost of the predictive
correctness.

For future work, we could improve our system along differ-
ent directions. The current system uses only the file metadata
information to provide recommendations. In future, the con-
tent of files could also be utilized to improve the effectiveness
of the system. In addition, leveraging interactions observed
between the features, we could reduce dimensionality of
the data for better efficiency and effectiveness. We could
implement a weighing scheme that gives more importance
to the recent activity as it is more reflective of the current
preferences of users. Finally, we could incorporate features
that capture producer-consumer relationship between users.
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