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Abstract—Ever since video compression and streaming tech-
niques have been introduced, measurement of perceived video
quality has been a non-trivial task. Dynamic adaptive stream-
ing (DASH) over hypertext transfer protocol, is a new worldwide
standard for adaptive streaming of video. DASH has introduced
an additional level of complexity for measuring perceived video
quality, as it varies the video bit rate and quality. In this paper,
we study the perceived video quality using DASH. We investigate
three factors which impact user perceived video quality: 1) initial
delay; 2) stall (frame freezing); and 3) bit rate (frame quality)
fluctuation. For each factor, we explore multiple dimensions that
can have different effects on perceived quality. For example, in the
case of the factor stall, while most previous research have studied
how stall duration correlates with user experience, we also con-
sider how the stalls are distributed together with the amount of
motion in the video content, since we believe they may also impact
user perceived quality. We conduct extensive subjective tests in
which a group of subjects provide subjective evaluation while
watching DASH videos with one or more artifacts occurring.
Based on the subjective tests, we first derive impairment func-
tions which can quantitatively measure the impairment of each
factor, and then combine these impairment functions together to
formulate an overall user experience model for any DASH video.
We validate with high accuracy the user experience model, and
demonstrate its applicability to long videos.

Index Terms—Multimedia communication, quality of service,
streaming media, videos

I. INTRODUCTION

THE WIDE adoption of more capable mobile devices such
as smart-phones and tablets, together with the deploy-

ment of higher capacity mobile networks and more efficient
video compression techniques, are making mobile video con-
sumption very popular. According to Cisco’s mobile traffic
forecast [1], mobile video consumption will increase 14-fold
between 2013 and 2018, accounting for 69 percent of total
mobile data traffic by the end of 2018. However, the success
of mobile video streaming will largely depend on meeting
user experience expectations. Therefore, it is highly desirable
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for video streaming service providers to be able to define,
measure and, if possible, ensure mobile video streaming user
experience.

Recently, a new class of video transport techniques has been
introduced for transmission of video over varying channels
such as wireless network. These transport techniques, called
adaptive streaming, vary the bit rate and quality of the trans-
mitted video to match the available channel bandwidth and
alleviate the problems caused by network congestion, such
as large latency and high packet loss rate. DASH, Dynamic
Adaptive Streaming over HTTP, is a new international stan-
dard for adaptive streaming [2], which enables delivering
media content from conventional HTTP web servers. DASH
works by splitting the media content into a sequence of small
segments, encoding each segment into several versions with
different bit rates and quality, and streaming the segments
according to the requests from streaming client. On the client
device side, the DASH client will keep monitoring the net-
work and dynamically select the suitable version for the next
segment that need to be downloaded, depending on the current
network conditions.

On the DASH server side, each media segment is made
available at a variety of bit rates. Each bit rate will be asso-
ciated with a set of other encoding factors such as frame rate
and resolution. Different streaming service providers might
use different encoding options for a given bit rate. As an
example, Table I shows the bit rate options and the associated
frame rates and resolutions that were used for streaming the
Vancouver Olympics [4] videos using DASH. In this paper,
we use the term level to represent a bit rate and the associ-
ated frame rate and resolution. As shown in Table I, the video
segments are encoded using any of the 8 levels; each of them
has a specific bit rate, frame rate, and resolution.

It is well known that DASH video streaming is based on
HTTP (Hypertext Transfer Protocol) and TCP (Transmission
Control Protocol) which assure reliable video packets delivery
and retransmission of lost packets. Using TCP retransmission
and buffering mechanism can avoid audiovisual distortions
caused by network artifacts such as jitter or packet loss.
Instead, these network artifacts would lead to rebuffer-
ing interruptions and additional initial delay, which would
deform the video’s temporal structure and impact user experi-
ence. Furthermore, unlike regular TCP-based video streaming,
DASH has introduced an additional level of difficulty for
measuring video quality, since it varies the video quality dur-
ing streaming. Although the video quality adaptation scheme
can mitigate the temporal impairments such as rebuffering,
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TABLE I
ENCODING SETTINGS FOR STREAMING VANCOUVER OLYMPICS

Fig. 1. Mobile bandwidth trace and DASH video quality variation patterns.

the quality variation during streaming may also impact the
user experience of the viewers.

Quantifying the impairment caused by quality variation is
non-trial but highly desirable. For example, Fig. 1 shows
a mobile bandwidth trace and two associated video bitrate
adaptation patterns produced by using different DASH algo-
rithms. Pattern 1 is more conservative but provides a more
stable overall quality. Pattern 2 is more aggressive, and it tries
to increase the video quality whenever the available network
bandwidth increases. It is difficult to tell which one is more
preferable from a user experience perspective. The answer to
this question may be helpful for video service providers to
optimize their DASH quality adaptation algorithm.

Therefore, the aim of this paper is to derive a model
to quantitatively measure the user experience of a video
streamed using DASH, considering both temporal artifacts
(like rebuffering) and spatial artifacts (like video quality
variation). We first identify three factors that will impact the
user experience: initial delay, stall and level variation. We
show that each of these factors have multiple dimensions
which may impact user experience differently. We design and
conduct subjective experiments by which viewers evaluate the
effect on viewing experience when one or more of the three
factors are varied. Based on the evaluations given by the par-
ticipants of the subjective experiments, we derive impairment
functions for each of the factors, and then combine them
together to form an overall user experience model. Note the
proposed user experience model is a non-reference model, and
no access is needed for the original video source. Hence, the

proposed user experience model can be conveniently incor-
porated into DASH clients on mobile devices to measure the
impairments during a live video session.

The impairment of the three factors on user experience may
vary depending on the video content, such as the amount of
motion, or the duration of the video. For instance, the impact
of stalls on user experience may be higher for a high motion
video and less for a low motion video. Similarly, the impact
of initial delay may be higher for a video with short dura-
tion and less for a video with long duration. Our proposed
user experience model considers the amount of motion in the
video content, and as we later demonstrate, can be applied
to short to medium length videos covering most of online
videos. Note that the impairment on user experience may
also depend on other factors like how much a user likes the
video or the type of mobile device (screen size/resolution)
used. Our research and the proposed model do not consider
these factors, which can be possibly investigated further in our
future work.

Numerous video quality assessment methods have been pro-
posed over the past years. Most of them [5]–[7], [14]–[17]
focus on measuring the video spatial quality (visual quality of
video frame) and ignore the temporal artifacts such as stalls.
In [8], [9], [18], and [19], models have been proposed to study
the video temporal quality, but they don’t include the variation
of bit rate (visual quality) during the streaming session, and
are therefore not suitable for DASH video. In [10] and [11],
the authors have studied the impact of bit rate variation on user
experience. While they derive interesting observations about
how variation frequency and amplitude affect user experience,
they do not develop ways to quantitatively measure the effects.
Moreover, they do not consider temporal artifacts such as stall.
To the best of our knowledge, this paper is the first study to
develop a quantifiable measure of user experience for DASH
video, considering both spatial and temporal quality.

The remainder of the paper is organized as following:
in Section II, we introduce the factors that will affect user
experience of DASH video. In Section III, we first explain
the characterization experiments we conducted to study how
DASH performs in various mobile network conditions, and
then we explain how we use the characterization experiments
as a guideline to generate the test videos for subjective exper-
iments. In Section IV, we describe the first round of subjective
experiments, and derive impairment functions for the different
factors based on experiment results. Section V describes a sec-
ond round of subjective tests and the derivation of the overall
user experience model. Section VI demonstrates application
of the proposed model to long videos. Section VII concludes
this paper and points out future work.

II. FACTORS AFFECTING USER EXPERIENCE

FOR DASH VIDEO

The first step to study and model user perceived video
quality is to identify the impairment factors which impact
user experience. In this section, we propose and explain three
impairment factors that will affect the user experience for
DASH video.
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Fig. 2. Factors affecting user experience of DASH video.

During a DASH video watching session, video will be
transmitted over wireless network, which is characterized
by quickly fluctuating and unpredictable bandwidth. In this
streaming process, there are mainly three kinds of events
which may affect the user perceived video quality: 1) there
is an initial delay before the first frame of the video can
be displayed, due to the need for the video client to buffer
a certain amount of video data; 2) during a video session, it
is possible that the bit rate adaptation cannot keep up with
the network bandwidth fluctuation, leading to buffer under-
flow and stalling (rebuffering); 3) during a video session, the
video quality might keep switching, reducing the video qual-
ity will cause impairment to user experience, and continuous
video quality switches will also harm user experience.

As shown in Fig. 2, we investigate three objective factors:
initial delay, stall (rebuffering) and level variation. The user
experience for DASH video mainly depends on two subjective
factors: temporal quality and spatial quality. The initial delay
and stall will determine the temporal quality of the perceived
video, and the level variation will determine the spatial quality
of video.

Unlike initial delay, the factors stall and level variation are
more complex and have multiple dimensions associated with
them. For the stall factor, the total stall duration (in seconds)
is crucial. Most of the previous research only studied how
stall duration correlates with user perceived quality. However,
we think the number of stalls is also an important dimension.
For example, consider total stall duration of 5 seconds: the
effect on user experience may be different if there is a single
stall of 5 seconds duration, versus five 1-second stalls. Hence,
besides the total stall duration, we would like to also con-
sider the number of the stalls as a second dimension of the
factor stall.

Similarly we propose three dimensions for factor level vari-
ation: 1) average level, which indicates the average quality
of the entire video session; 2) number of switches, which
indicates the frequency of quality switch; 3) average switch
magnitude, which indicates the average amplitude of quality
change. For instance, for a level variation pattern as shown
in Fig. 3, the average level is 2.8, number of switch is 3,
and the average switch magnitude equals 1.67. Noted that
in Fig. 2 we haven’t differentiated increasing level switch
(when the bit rate increases) and decreasing level switch

Fig. 3. Level variation pattern.

Fig. 4. Testbed of DASH video streaming characterization experiments.

(when the bit rate decreases). But as explained in Section IV,
we will decide whether to treat increasing switch and decreas-
ing switch differently based on the results we obtain from
subjective tests.

III. TEST VIDEO GENERATION

In order to derive functions to quantitatively measure the
impairment of the 3 factors proposed in Section II, we need
to conduct extensive subjective tests, where each participant
watches DASH video while one of the three factors varies.
However, due to the multi-dimensional nature of the factors
stall and level variation, there may be numerous cases we
need to cover in the test videos. On the other hand, we need
to constraint the number of test videos a subject can watch
before loss of focus and fatigue can affect the quality of the
testing. Motivated by this tradeoff, we designed test videos
in an efficient way such that they cover a wide and repre-
sentative range of the 3 factors, and we are able to derive
impairment functions from a limited number of test videos. In
this section, we describe how we generate the test videos for
the subjective tests.

A. DASH Video Streaming Characterization Experiments

In order to generate meaningful and representative test
videos, we first conduct a set of DASH video streaming exper-
iments to characterize how DASH performs under real mobile
network conditions. From the streaming experiments, we can
understand what will be the possible range and distribution for
the 3 factors under various network conditions. This range and
distribution information will be used as a guideline to generate
the test videos.

Fig. 4 shows the testbed for the DASH characterization
experiments. DASH videos are pre-encoded and stored at the
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Fig. 5. Results for characterization experiments: (1) purple curve: network
bandwidth; (2) green curve: segments download bit rate; (3) yellow curve:
video bit rate.

media server. The media server and the mobile devices are
connected through a network emulator, which can be used to
control network parameters, such as bandwidth, latency and
packet loss rate. On the network emulator, we can apply dif-
ferent mobile network bandwidth traces. At the mobile device
side, a DASH player displays the received video and makes
video level switch decisions. After each video streaming ses-
sion, a log file is generated on the mobile device, including
information about the 3 factors for this streaming session. For
instance, this log file will tell during the streaming session,
what the level variation pattern is, how many stalls occurred
and when they occurred.

This testbed offers the flexibility for us to stream under
different network conditions, and records the values of the
3 factors. In the characterization experiments, we stream
a DASH video to an Android tablet, under 20 different mobile
network conditions. This selected DASH video is 2-minute
long and has medium amount of motion. It is split into
2-second segments and pre-encoded into 7 levels (with encod-
ing bit rate of 256, 384, 512, 768, 1024, 1536, 2048 kbps,
respectively). We use 20 mobile network traces that are wide-
ranging and representative, captured with different mobile
operator networks at different geographical locations, and
include stationary as well as different mobility scenarios,
such as pedestrian, car, train, etc. The bandwidth of the net-
work traces varies between 4Mbps and 150kbps. Among the
20 network traces, the average bandwidth of each trace varies
between 750kbps ∼ 1850 kbps.

Fig. 5 shows a representative result of the characterization
experiments. The purple curve represents available mobile net-
work bandwidth, the green curve shows the video segments
downloading rate, and the yellow curve shows the actual adap-
tive video bit rate. We can see that the DASH adaptive bit
rate (yellow curve) will switch up and down between several
discrete steps due to the fast fluctuation of mobile network
bandwidth (purple curve).

Fig. 6 shows the distribution of initial delay among the
20 streaming sessions, each using one of the 20 differ-
ent network traces. The 20 initial delay values are between
1280ms and 4890ms. Fig. 7(a) and (b) show the distribution
of total stall duration and stall number among the 20 stream-
ing sessions (each of them is 2-minute long). We find that
in 55% of the streaming sessions there is no stall happening.

Fig. 6. Distribution of initial delay among 20 streaming sessions.

Fig. 7. (a) Left, distribution of total stall duration; (b) right, distribution of
number of stalls.

In the other sessions, the stall number is less than 3. And the
stall duration of a video session can be as long as 20 sec-
onds. Fig. 8(a)–(c) show the distribution of the average level,
number of switches, and average switch magnitude respec-
tively. We can see that during a 2-minute streaming session,
the number of level switches can vary from 6 to 21. The aver-
age switch magnitude is between 1 and 1.3, which indicates
that the current DASH technique mainly utilizes small mag-
nitude switches to avoid impairment caused by large quality
change.

B. Generated Test Cases for Round I Subjective Tests

After presenting the ranges and distribution of the 3 factors,
in this subsection we will use them as a guideline to gener-
ate the test videos for round I subjective tests. We may also
include test videos whose characteristics are outside of what
was observed in the DASH characterization tests to cover more
extreme cases. For instance, although the initial delay values
we obtain from all real experiments are less than 5 seconds
(Fig. 6), we will also have test video with very long initial
delay, like 15-second initial delay.

We design 40 test videos for subjective tests. Each of them is
1 minute long. In each test video, we only vary one factor and
keep the other two factors at their best values. For instance,
we have 5 test videos for deriving the impairment function for
initial delay. In these 5 test videos, there is only initial delay
impairment; no stall occurs and the video level remains at the
highest value. When people watch these 5 videos and give
evaluations, they are only evaluating the impairment caused
by initial delay. By generating test videos in this manner, we
can separate the 3 factors, and be able to derive impairment
function for each of them. Fig. 9 shows a snapshot of the video
contents we use, and Table II lists their descriptions. As can
be seen, the 6 videos contents are selected to cover different
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Fig. 8. Distribution of level variation: (a) left, average level; (b) middle, number of switches; (c) right, average switch magnitude.

Fig. 9. Snapshot of test videos.

TABLE II
VIDEO CONTENT DESCRIPTION

video genres (news, animation, movie, sports) and different
motion characteristics.

In order to simulate one of the three impairments in each test
video, in this study we use ffmpeg [24] software as the tool
for video encoding and processing. The version of ffmpeg we
used is 0.8.15 and the selected video codec is H.264/AVC. To
simulate the initial delay, we insert some identical ‘buffering’
frames (shown in Fig. 10(a)) in front of the raw video frames
and then encode all the frames. The duration of the initial delay
is controlled by the number of ‘buffering’ frames inserted.
Similarly, the stall impairment is simulated by inserting some
identical ‘loading’ frames (shown in Fig. 10(b)) in the middle
of raw video frames. As shown in Fig. 10(b), the inserted
‘loading’ frame is the last raw video frame with a watermark
of word ‘Loading’. Moreover, the level variation impairment
is simulated by encoding different groups of raw video frames
with different encoding parameters and concatenating all the
encoded video streams together.

We use video #1∼ #5 for deriving the impairment function
of initial delay. As shown in Table III, we investigate the initial
delay between 2 to 15 seconds.

Fig. 10. Special frames used to simulate initial delay and stall: (a) left,
‘buffering’ frame for simulating initial delay; (b) right, ‘loading’ frame for
simulating stall.

TABLE III
TEST CASES FOR INITIAL DELAY

TABLE IV
TEST CASES FOR STALL

Videos #6∼#15 are used to investigate the impairment due
to stall. As shown in Table IV, the total stall duration values
we investigated are [4, 8, 12] seconds. Since we observed stall
duration between 0 and 20 seconds for the 2-minute video ses-
sions in the DASH characterization tests [Fig. 7(a)], we assume
that considering stall durations between 4 and 12 seconds will
be reasonable for the subjective tests conducted with videos
of 1-minute duration. Similarly, in video 6∼15, we consider
the number of stalls of 1∼3, which corresponds to the result
shown in Fig. 7(b). We also want to study the extreme cases
where there are a lot of very short stalls and the stall number
is bigger than 3. Video #8, #12 and #15 are videos with lots
of 1-second stalls, and we want to understand how people feel
with these frequent short stalls.

Videos #16∼#40 are designed for deriving impairment func-
tion of level variation factor. Fig. 11 shows the level variation
pattern of these 25 test videos. These 25 level variation
patterns are designed to guarantee that: 1) the experiment
results (range and distribution) shown in Fig. 8 are met;
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Fig. 11. Test videos for level variation factor.

TABLE V
RATING CRITERIA FOR VIDEO QUALITY

2) include plenty of different switch frequencies and mag-
nitudes, both increasing switches and decreasing switches;
3) include different video starting levels and ending levels.

IV. DERIVATION OF IMPAIRMENT FUNCTIONS

After generating these 40 test cases, in this section, we will
describe the first round of subjective tests, and then derive the
impairment functions for the 3 factors according to the test
results.

A. Round I Subjective Experiments

The subjective quality assessment experiments follow
ITU-T Recommendations [12]. Each test video is presented
one at a time, and each subject gives individual evaluation
about the perceived video quality with a 100 point quality
scale, as shown in Table V. As the subjects are evaluating
the perceived video quality, denoted as R, the corresponding
impairment will be 100-R. The experiment is conducted in
a lab environment with good light condition. A Qualcomm
MSM8960 tablet with 1280x768 display resolution is used to
watch the test videos.

30 subjects from University of California,
San Diego (UCSD), with age ranging from 18 to 28, were
selected for the study, satisfying the requirement of number
of viewers specified by ITU-T Recommendations [12]. To
ensure their evaluations are not biased, the selection of the
subjects is done so that they don’t have prior knowledge or
watching experience of DASH video. Each subject is first
presented with a training sequence which is different from the

Fig. 12. Relationship between impairment and initial delay.

TABLE VI
VALUES OF COEFFICIENTS

test videos to help him/her get familiar with the experiment
environment and adjust his/her comfortable viewing distance
and angle.

The evaluations for each test video i are averaged over all
subjects to obtain an average video quality value, denoted
by Ri. Correspondingly, the average impairment value of
video i will be 100- Ri. In the next subsection, we will
use these average impairment values to derive impairment
functions for all the 3 factors.

B. Impairment Function for Initial Delay

In test videos #1∼#5, we add different length of initial delay
in the beginning of the video. The relation between the ini-
tial delay value and the average subjective impairment values
is shown in Fig. 12. We can see that the average subjective
impairment of the 30 subjects is almost linear with the initial
delay. Therefore, the impairment function for initial delay can
be formulated as the following linear equation:

IID = min
{
α∗LID, 100

}
(1)

where IID stands for the impairment due to initial delay, LID

is the length of initial delay (in seconds). The coefficient α is
computed by linear regression and is listed in Table VI. We
have also used a min function to limit the impairment when
it reaches its maximum.
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Fig. 13. Subjective stall impairment results for different video contents, stall
duration and stall number.

C. Impairment Function for Stall

We have prepared test videos with different combinations
of stall duration and stall number, for different video content.
Fig. 13 shows an example of the stall impairment results of
5 different stall distributions on 6 different videos (as intro-
duced in Fig. 9 and Table II). We find that besides stall number
and stall duration, video content, more specifically the amount
of motion in the video, also plays a crucial role in determining
impairment value. We can see that for the same stall duration
and stall number, high motion video has bigger impairment
than low motion video. This may be due to the higher expec-
tation/requirement of fluidness for high motion video content
such as sports video.

Therefore in order to model the stall impairment, we first
characterize the amount of motion in video. Then we will
develop a function to model stall impairment.

1) Video Motion Characterization: We propose to use
the average magnitude of motion vectors to characterize the
amount of motion of a certain video content. In any regu-
lar video application, motion vector can be directly extracted
from the encoded video bitstream without further computation.
Furthermore, from the motion vectors in x and y direction,
we compute the Motion Vector Magnitude (MVM) for each
16x16 macroblock, MBij, which we define as:

MVMij =
√(

mij,x

Nx

)2

+
(

mij,y

Ny

)2

, (2)

where Nx, Ny are the number of 16x16 MBs in the horizon-
tal and vertical directions; and mij,x, mij,y are the projection
of motion vector on x and y directions for MBij. In equa-
tion (2) we have normalized the MVM by the width and height
of video frame to get rid of the influence of video spatial
resolution on the motion characteristic of video content.

We then take the average of all the MBs to obtain the
average MVM value of a video frame, denoted as MVM:

MVM = 1

Nx ∗ Ny

Nx∑

i=1

Ny∑

j=1

MVMij

Fig. 14. (a) Left, MVM value of each frame; (b) right, AMVM for the
whole video.

TABLE VII
SUBJECTIVE EXPERIMENT RESULTS FOR DIFFERENT STALL DURATION

AND STALL NUMBER, FOR VIDEO Bunny

Let us use MVMkto denote the average MVM value for the k-th
frame, then the Average Motion Vector Magnitude (AMVM)
of the whole video can be computed as:

AMVM = 1

M

M∑

k=1

MVMk,

where M is the number of frames in a video.
We will use AMVM as the metric to characterize the amount

of motion of a video. As an example, Fig. 14(a) shows
the motion vector magnitude of video Bunny and Soccer
(as described in Table II) frame by frame. Fig. 14(b) shows the
average motion vector magnitude (AMVM) of the two videos.
We can see that using AMVM we can clearly differentiate high
motion video and medium motion video. Hence, AMVM is an
effective and easy-to-obtain metric to characterize the amount
of motion in video.

2) Stall Impairment Function Derivation: After being able
to quantify the amount of motion in a video, we then derive
a stall impairment function, IST , based on the test results
under different combinations of stall number, stall duration
and AMVM.

First, we investigate for a given AMVM value, how stall
number and stall duration affect the impairment due to
stall (IST ). Table VII shows the average impairment values
for a certain video (we choose video Bunny as an example, it
is a cartoon video with medium motion), where stall duration
and stall number vary but AMVM is fixed. From the results
listed in Table VII, we make the following observations:

Observation (a): When stall number is fixed, the impair-
ment value increases monotonically with stall duration.

Observation (b): When stall duration is fixed, the impair-
ment value does not increase monotonically with stall number.
We also observe that the impairment value is highest with the
highest stall number, which indicates that frequent stalls will
cause high impairment on user experience.
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Fig. 15. Relationship between IST and video motion under different stall
distributions.

Secondly, we consider how motion information (AMVM)
will affect IST. Fig. 13 shows the stall impairment values
with different video contents (from low motion news video
to fast moving sports video). We can see that for a given
video content, the observations (a) (b) still hold. Moreover,
Fig. 15 shows the relation between stall impairment and the
AMVM value. From Figs. 13 and 15, we have the following
observation:

Observation (c): For the same stall duration and stall
number, the impairment due to stalling will increase as the
motion (AMVM) increases. But after AMVM reaches a cer-
tain threshold (when the motion level is high enough), the
impairment will not further increase.

Observations (a), (b) and (c) tell us that we cannot use a lin-
ear equation to model the relationship between stall impair-
ment with stall number, stall duration and AMVM. Therefore,
we propose to use equation (3) as the impairment function for
stall:

IST =

⎧
⎪⎪⎨

⎪⎪⎩

a ∗ DST + b ∗ NST − c ∗ g(DST , NST)

+ d ∗ AMVM (if AMVM < MVTh)

a ∗ DST + b ∗ NST − c ∗ g(DST , NST)

+ d ∗ MVTh (if AMVM >= MVTh)

(3)

In equation (3), IST stands for the impairment due to stall,
DST indicates the total duration of stall, NST stands for the
number of stall. Function g(DST , NST) is used to compensate
the simultaneous effects of stall duration and stall number and
to match the phenomenon explained in observation (b). We use
a piecewise function to ensure that once the AMVM exceeds
threshold MVTh, the stall impairment will not further increase.
According to the results shown in Fig. 15, the threshold MVTh

is set to be 0.012.
In order to derive g(DST , NST) and the coefficients in equa-

tion (3), we start with randomly selecting 60% of the test
results associated with stall impairment, and use them to
train the model for IST (equation (3)). During the training,
we use different types of formulas for g(DST , NST), includ-
ing k1 ∗ DST + k2 ∗ NST , Dk1

ST ∗ Nk2
ST and Dk1

ST + Nk2
ST , and

use non-linear regression to compute the coefficients in equa-
tion (3). Then we use the remaining 40% of the test results
associated with stall impairment to validate the proposed IST
function with all possible g(DST , NST) formulas. Finally we

TABLE VIII
SUBJECTIVE EXPERIMENT RESULTS FOR LEVEL VARIATION TESTS

select the formula shown in equation (4), since it achieves
highest correlation in the validation process.

g(DST , NST) = √
DST ∗ NST (4)

The values of coefficients a, b, c and d in equation (3) are
listed in Table VI.

D. Impairment Function for Level Variation

Level variation is the most complex factor to study, since it
is difficult to characterize the complex patterns of level varia-
tions during a video session. As introduced in Section II, there
are 3 dimensions for the level variation factor: average level,
number of switches, and average switch magnitude. We need
to derive an impairment function which can cover and reflect
all 3 dimensions.

Table VIII shows the average evaluation of the impairment
for test videos #16 ∼ #40 (shown in Fig. 11). From the results
we have the following observations:

Observation (d): All 3 dimensions of level variation factor
will together affect user experience in a complex manner. For
instance, comparing video #17 with video #20, both of them
have an average level of 4.1, but the impairment of video #20 is
significantly larger than that of #17. The same average level
may lead to a completely different user experience, depending
on the level fluctuation pattern. Therefore it may be difficult to
reuse the method used for deriving IID and IST to also derive
the impairment due to level variations.

Observation (e): The annoyance of staying at a low level
(low quality) will grow exponentially with the duration that
the low level is maintained. Comparing video #25 with #28,
both of them have average level of 4.9 and similar amount
of level switch magnitude, but video #25 has much smaller
impairment than #28. This is because in video #25, when the
level drops to the lowest value (level 1), it only lasts for about
2 seconds and then jumps up; in video #28, level stays at 1 for
more than 10 seconds. If the low level (bad quality) just lasts
for a short period of time, the viewer might not complain as
much. But if a low level is maintained for a long time (such
as more than 10 seconds), people will feel great annoyance.

Observation (f): The impact of decreasing level switch
is much larger than that of increasing switch. Comparing
video #17 with video #36, they both have an average level
of 4.1, but video #36 has much more impairment than
video #17. This is because the level switches in video #17 are
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Fig. 16. Relationship between VQM value and bit rate.

mostly increasing switches, while the switches in video #36
are mostly decreasing switches. Therefore, we cannot treat
increasing switches and decreasing switches equally when we
derive the impairment function.

Based on the results and observations, we next discuss how
to derive an impairment function for the factor level varia-
tions. Firstly, we need to point out that we cannot use “level”
directly in the impairment function. Different streaming ser-
vice providers will have different encoding settings for each
level. For the same level, different service providers will spec-
ify different frame rates and resolutions associated with it. If
we derive an impairment function based on the level value,
then this impairment function cannot be applied generally.

Therefore, we propose to use VQM [3] instead of level
in impairment function. VQM is a widely accepted objective
video quality metric, which has been proven to have good cor-
relation with human perception. But VQM cannot be applied
directly to DASH video because it doesn’t consider the impair-
ment due to level variation. The VQM value is a number
between 0 and 1. A lower VQM value indicates a better video
quality. In this paper, we use VQMi to indicate the amount of
annoyance of video segment i. A lower VQMi value means
better quality and less annoyance.

The need to use VQM will not cause too much additional
effort for content providers. On the DASH media server, the
video sources are split into fixed-length segments and encoded
into different levels. For each video segment i encoded at
level j, we can obtain its VQM value, VQMij. The process
of obtaining VQM value for each segment at each layer can
be conducted offline on the media server, and it only needs
to be carried out once. Once this process is done, the VQM
values can be utilized to measure experienced impairments for
all the future users.

Fig. 16 shows an example of the VQM values for different
levels for the encoding settings we used in our study. We can
see that increasing the bit rate will cause a sharp decrease in
VQM when bit rate is low. When bit rate becomes higher,
further increasing bit rate will not lead to significant decrease
in VQM.

Next we will derive an impairment function using metric
VQM. Basically, the impairment caused by level variation
during a DASH video session consists of 2 parts: 1) the impair-
ment caused by low level (bad video spatial quality); 2) the
impairment caused by level fluctuations.

In order to derive the impairment function, we first define
the following terms: assuming in a video session, totally N
video segments are being transmitted. All the video segments

Fig. 17. Di values and VQM values for a 20-second DASH video.

have the same duration T . Depending on the DASH imple-
mentation, the value of T can be 2 seconds, 5 seconds or
10 seconds, etc. For each segment i, we define a term Di,
which indicates the number of consecutive segments that are
right before segment i and have VQM value within range
[VQMi − μ, VQMi + μ]. Parameter μ is heuristically set to
be 0.05.

Fig. 17 shows an example of bit rate trace and the corre-
sponding Di values for a 20-second DASH video. In the y-axis
we have converted bit rate into VQM value. As shown in
Fig. 17, Di is an integer that will accumulate if VQM remains
constant or vary within a very small range. For example, for
the 10th segment (when i equals 10), there are 3 consecutive
segments before it that have VQM value between VQM10 −μ,
VQM10 + μ, therefore D10 equals 3.

We model the first part of impairment (caused by low level
itself) as:

P1 = 1

N

N∑

i=1

VQM∗
i ek∗T∗Di (5)

As shown in equation (5), the P1 value (impairment due to
low level) is a weighted average of the VQM values of each
video segment. The exponential term in equation (5), ek∗T∗Di ,
is used to comply with our observation (e) that the annoyance
caused by a low level grows exponentially with the duration
that the low level is maintained. We use value Di to indicate
how long the level of segment i has been maintained, and
multiply VQMi with the exponential term to obtain the real
annoyance of segment i. The coefficient k in equation (5) is
used to control how fast the annoyance grows with time. The
value of k is determined experimentally and listed in Table VI.

The second part of the impairment caused by level fluctua-
tions can be modeled as:

P2 = 1

N

N−1∑

i=1

|VQMi − VQMi+1|2 ∗sign(VQMi+1 − VQMi),

(6)

where

sign(x) =
{

1, x > 0
0, otherwise

(7)

The value of P2 is the average of the square of VQM
differences between adjacent segments. According to our
observation (f), the impairment caused by increasing switch is
much smaller than that caused by decreasing switch. Therefore
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Fig. 18. Relationship between subjective and objective impairments: (a) left,
first round of validation for impairment function ILV ; (b) right, second round
of validation for impairment function ILV .

in equation (6) we use sign function (equation (7)) to only con-
sider decreasing level switches and exclude increasing level
switches.

Finally, the impairment due to level variation denoted as
ILV , is modeled as a weighted sum of P1 and P2:

ILV = B1
∗P1 + B2

∗P2 (8)

where B1 and B2 are coefficients which need to be derived
later. Note that the proposed impairment function ILV covers all
the 3 dimensions of level switch: 1) average level, covered by
P1; 2) number of switch, covered by P2; 3) average magnitude
of switch, covered by P2.

We conducted a two-fold cross validation for the impair-
ment function ILV . With the 25 test videos for level switch,
we randomly choose 15 videos for developing the impairment
function ILV , and use the other 10 videos for validating the
derived ILV . Then we shuffle the 25 test videos, choose another
set of 15 videos for developing the impairment function, and
use the rest for validation.

Fig. 18(a) and (b) show the results of the two different val-
idations tests, specifically the relation between the subjective
impairment values given by viewers with the objective impair-
ment values computed by ILV . The two validation tests achieve
high correlation values of 0.88 and 0.84. We will pick the
impairment function derived in the first round of validation as
our final selected impairment function ILV , as the first round
validation lead to higher correlation. The corresponding coef-
ficient values, B1 and B2 are derived using linear regression
technique and are listed in Table VI.

V. OVERALL USER EXPERIENCE MODEL

In this section, we develop a DASH User Experience
(DASH-UE) model which quantitatively measures the overall
user experience, incorporating the impairment functions that
we had developed in the previous section. We present results
of another round of subjective experiments conducted to derive
and validate the DASH-UE model.

We define DASH Mean Opinion Score (DASH-MOS) as
a measurement metric for DASH-UE. Since DASH-MOS is
determined by initial delay, stall and level variation factors
as shown in Fig. 2, we attempt to formulate it using the
impairment functions of these factors, similar to the frame-
work of ITU-T E-Model [13]. ITU-T E-model is developed for
audio transmission, where the multiple impairments (such as
network delay impairment, audio distortion impairment, etc.)

occur simultaneously. E-model offers a way to quantify the
combined impact of these audio transmission impairments.
Therefore, we borrow the framework of the E-model because
our DASH-UE model also needs to quantify the combined
effect of multiple impairments.

In ITU-T E-model, the Mean Opinion Score (MOS) is for-
mulated by a transmission rating factor R [13]. We duplicate
this function for our DASH-MOS formulation:

DASH − MOS = 1 + 0.035R + 7 × 10−6R(R − 60)(100 − R)

(9)

In (9), the transmission rating factor R takes value from range
[0, 100] (the higher R, the better DASH-UE). DASH-MOS is
related with R through nonlinear mapping, and it is within the
range of [1, 4.5].

Although the framework of ITU-T E model is helpful
for our study, the formula to compute R factor specified in
ITU-T E model is specific to audio transmission and not suit-
able for DASH video streaming. Therefore, in this paper we
propose to formulate the R factor as:

R = F(IID, IST , ILV)

= 100 − IID − IST − ILV

+
∑

i,j∈{ID,ST,LV}
i �=j

fij
(
Ii, Ij

)
(R > 0) (10)

In (10), R is composed of impairment functions due to initial
delay, stall, and level variation. These impairment functions
have been derived in previous section. Term fij(Ii, Ij) indicates
the cross-effect between two different impairments and is used
to compensate and adjust the R factor, because when several
impairments happen simultaneously, the overall impairment
will be different from the sum of each impairment.

In order to derive the formula of function fij(Ii, Ij), and
also validate the accuracy of the overall DASH-UE model, we
conduct another set of subjective quality assessment exper-
iments with a new group of participants. In the following
subsections, we will introduce the new subjective tests, ana-
lyze the collected test results, and derive and validate the
DASH-UE model.

A. Second Round of Subjective Test

Another set of subjective tests has been carried out using
a new panel of 47 subjects from UCSD and Qualcomm. The
subjective test is still conducted in a controlled lab environ-
ment. Unlike the first round of test, this time each viewer is
watching videos where the three artifacts (initial delay, stall
and level variation) happen simultaneously.

Table IX lists the parameter values we use in this round
of subjective tests. Similar to the first round of tests, each
test video is about one minute long. We have selected 4 dif-
ferent video contents, including medium motion videos like
animation and movie, and high motion videos such as soc-
cer and surfing videos. The initial delay values vary between
2 to 10 seconds, which is a reasonable range considering the
whole test video is one minute long. We tried 4 different stall
distributions which lead to a wide range of stall impairment
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TABLE IX
PARAMETERS FOR SECOND ROUND OF SUBJECTIVE TEST

values, from no stall to 4 stalls which add up to 12 seconds.
Moreover, we include 4 different level variation patterns which
exhibit very distinct impairments.

The experiment is divided into two sessions with a
10-minute comfort break between them. This adheres to the
ITU-T recommendations that a continuous time period should
not exceed half an hour to ensure a subject does not experience
fatigue during the test.

The subjects evaluate the overall user experience of video
quality (represented by the R-factor shown in equation (10))
according to the judging criteria shown in Table V. The
R data obtained from the test was scanned for unreliable
and inconsistent results. We used the ITU-T [12] criteria for
screening subjective ratings which led to two subjects being
rejected and their evaluations are eliminated. The scores from
the rest of the subjects (45) were averaged to compute the
overall user experience (R value) for each test condition.

B. Model Derivation and Validation

In this subsection, we will first present and analyze the test
results. Based on the observations drawn from the results, we
will then derive the DASH-UE model. Finally we will present
validation results.

Fig. 19 shows the subjective R values for different stall
impairment, IST, and different level variation impairment, ILV,
for a fixed initial delay value (here we show result when ini-
tial delay equals 2 seconds or 10 seconds). Note the values of
IST and ILV used in Fig. 18 are derived from the actual stall
and level variations used in each test condition, using the stall
and level variation impairment functions (equation (2) ∼ (8)).
We can see that the overall user experience (R value) will
drop as IST or ILV increases. For a fixed level variation pat-
tern (fixed ILV), the R value will monotonically decrease when
ISTincreases, and the same for ILV. From Fig. 18, we have the
following observation.

Fig. 19. Relation between subjective R scores and IST and ILV.

Fig. 20. Subjective R score under different initial delay, stall and level
variation.

Observation (g): For a certain initial delay, both stall and
level variation will affect the overall UE, no matter how big
the initial delay is.

Fig. 20 shows the results from a different perspective. It
shows how subjective R scores vary for different initial delay
values under 3 sets of values of stall and level variation: (1) no
stall, level variation pattern 1 (the shape of pattern 1 is shown
in Table IX); (2) no stall, level variation pattern 2; and (3) two
stalls which add up to 8 seconds, and level variation pattern 3.
We can see that for case (1), when IST and ILV are small, the
R value will drop significantly when initial delay increases.
For case (3), when IST and ILV are large, there will not be
significant difference in R value when initial delay increases
from 2 seconds to 10 seconds. We can see that as IST and ILV
increase (from case (1) to cases (2) and (3)), initial delay will
have less influence on overall user experience. This is due to
the fact that people actually have higher tolerance for initial
delay than stall and level variation. From Fig. 19 we find that:

Observation (h): When stall and level variation impair-
ments are prominent, the subject may pay less attention to the
impact caused by initial delay. On the other hand, when stall
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Fig. 21. Relation between predicted and subjective DASH-MOS.

and level variations are marginal, the impact caused by initial
delay is more noticeable.

From observations (g) and (h), IID, IST and ILV should
not be treated as equally important in the formula fij(Ii, Ij)
of equation (10). The formulas of the compensation terms,
fij(Ii, Ij), should be derived such that: when IST and
ILV are large, the compensation terms associated with
IID, (fID,ST(IID, IST )+ fID,LV(IID, ILV)), should approximately
cancel out the term (-IID) in equation (10), such that the impact
of initial delay on overall user experience is marginal; on the
other hand, when IST and ILV are small, the compensation
terms associated with IID should also be small, such that initial
delay will have big impact on overall user experience.

Next, we randomly select 60% of the test results, and use
them to train the model for R (equation (10)). During the train-
ing, we use different types of functions for fij(Ii, Ij), including
(Ii +a×Ij)

n, In
i ×Im

j , and e(Ii+a×Ij)
n
, and use non-linear regres-

sion to compute the coefficients for the functions. Then we
use the other 40% of test results to validate the proposed R
model with all possible fij(Ii, Ij) functions. Finally we select the
function shown in equation (11), since it achieves the highest
correlation in the model validation process.

R = 100 − IID − IST − ILV + C1
∗IID

√
IST + ILV

+ C2
∗√IST

∗ILV (11)

In equation (11), coefficients C1 equals 0.15, C2 equals 0.82.
Note that in the term C1

∗IID
√

IST + ILV we have taken IID out
of the square root to give more compensation for initial delay,
which conforms to observation (h) that when IST and ILV are
large, people will ignore the impairment caused by IID.

Having derived the complete DASH-UE model
(equations (1) ∼ (8), (11) and Table VI), we now use the rest
of the subjective tests to validate the model. Fig. 21 shows the
correlation between predicted DASH-MOS scores computed
by the DASH-UE model (y-axis) and subjective DASH-MOS
scores (x-axis) for each of the tests. From Fig. 21 we observe
a high correlation of 0.91, and hence conclude that the
proposed model can accurately predict user experience of
DASH video.

VI. APPLICATION OF DASH-UE MODEL

TO LONG VIDEOS

One limitation of the DASH-UE model is that it is derived
based on 1-min long test videos, due to the limitation of num-
ber of test videos that each subject can watch. In this section,

Fig. 22. Impairment values of each minute of video.

TABLE X
TWO APPROACHES TO COMPUTE USER EXPERIENCE OF LONG VIDEO

we propose a method to apply the DASH-UE model to long
videos without modifying the model, and provide preliminary
validation results for the accuracy of this method.

Since our DASH-UE model is derived based on 1-minute
test videos, in the new approach, we propose to divide each
video into 1-minute intervals, and record the stall and level
variation pattern of each minute and calculate the correspond-
ing impairment value. As shown in Fig. 22, we denote the
stall impairment and level variation impairment during i-th
minute as IST−i and ILV−i, respectively. We propose two dif-
ferent approaches to measure the UE for the entire video, as
listed in Table X. Approach A computes the entire video’s
user experience by taking the average of every minute’s user
experience. Alternatively, in approach B, we first calculate the
average stall impairment (IST−ave) and level variation impair-
ment (ILV−ave) by taking the average of the impairments of
each minute. The overall user experience (R) is then com-
puted using the average stall and level variation impairment,
together with the initial delay impairment.

Another problem is that the initial delay impairment (IID)
is derived based on 1-min short video, and therefore it is not
applicable for long form videos. For the same initial delay, the
impairment on short video and long video would be different.

Therefore, we have conducted another round of subjective
test with long videos using 24 subjects from UCSD. This test
consists of two parts. The first part is used for deriving initial
delay impairment function (IID) for long video. The second
part is used for validating the proposed approaches A and B.

The first part of the test is similar to the test for deriv-
ing IID (described in Section IV-A). We ask the viewers to
watch a 1-min video with different initial delay values includ-
ing 3, 6, 10, 15, 25 seconds. But this time instead of evaluating
the initial delay impairment on the 1-min test video, we ask
the viewers how big the impairment would be assuming they
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Fig. 23. Subjective evaluations of initial delay impairment for different video
length.

Fig. 24. Relation between subjective R scores and predicted scores using
two approaches for test videos.

are watching a 10-min, 20-min or 60-min video. This eval-
uation is done immediately after the viewers finish watching
the 1-min test video and still clearly remember the amount of
annoyance they experienced due to initial delay. The results
are shown in Fig. 23.

Based on the results shown in Fig. 23, we apply regression
technique and adjust the initial delay impairment function IID
(originally proposed in equation (1)) as:

IID = min

{
3.2 ∗ LID

1 + ln(0.8 + 0.2 ∗Ltotal)
, 100

}
(12)

After deriving IID for long video, we conduct the second
part of subjective test in which we ask each subject to watch
3 videos, with duration of 5 minutes, 10 minutes, and 15 min-
utes respectively. For these 3 videos, we have distributed all
3 artifacts (initial delay, stall, level variation) simultaneously
in every minute of the video. We have also selected differ-
ent content for the 3 videos, including Bunny (for 5 minutes
video), Steel (for 10 minutes video) and Soccer (for 15 min-
utes video), which are described in Table II. After collecting
all the participants’ evaluations, we then compare the subjec-
tive evaluation of the overall UE (R value), with the predicted
R values using approaches A and B.

Fig. 24 shows the mean value of the subjective R value
(given by subjects) and the predicted R values using approach
A and approach B. We can see that: 1) approach A will always
lead to a predicted R value closer to the subjects’ evaluation
compared to approach B; 2) for the 5 and 10 minute videos, the
difference between the predicted R value (using approach A)
and subjective R value are both below 10, out of a 100 scale,

Fig. 25. Trace of predicted R scores for 15-minute Soccer test video.

showing high correlation; 3) for the 15 minute video, neither
of the approaches A or B can lead to accurate prediction.

The validation results show that for videos up to 10 minutes
long, approach A can provide adequate prediction accuracy.
According to surveys conducted by comScore, the aver-
age length of online videos is about 6.4 minutes long [20].
Therefore we claim that the proposed method (approach A)
can be applied to most of the online videos.

However, for videos that are longer (more than 10 minutes
long), our approach may not be applied directly. For these
videos, instead of providing one UE prediction score for the
entire video, we could use the DASH-UE model to provide
a minute-by-minute UE score trace. For example, we show
in Fig. 25 the predicted UE score trace of the 15-min Soccer
test video.

Fig. 25 also provides us insight into why the prediction
accuracy of approaches A and B may be low for longer videos,
like the 15-minute Soccer video (shown in Fig. 24). We notice
from Fig. 25 that the last few minute intervals have much
higher impairment (lower predicted R) than the previous inter-
vals. Since the quality (impairment) experienced in the latter
intervals of the video may have higher impact on a viewer’s
assessment than the quality experienced in the earlier parts,
this helps explain the low subjective score 62 seen in Fig. 24.
However, our proposed approaches A and B give equal weight
to the impairment of each minute interval, and hence pre-
dict much higher scores than the subjective score as seen in
Fig. 24. Hence, one way of improving prediction accuracy
for long videos may be to use unequal weights for each time
interval, with the weights increasing with increasing intervals.
The latter may provide a single UE score for the entire video
with sufficient accuracy, as an alternative when a single score
is more desired than a minute-by-minute UE scores as sug-
gested earlier for long videos. In general, quality assessment
of long videos should be investigated further as part of future
work, including the above suggested possible approach.

VII. CONCLUSION

In this paper, we have presented a novel user experience
model which can quantitatively measure the user experience
of DASH video, by taking into account both spatial and
temporal artifacts. We first investigate 3 factors which will
impact user experience: initial delay, stall and level variation.
Secondly, we design and conduct subjective experiments to
derive the impairment function for each of the factors. Thirdly,
we combine the 3 impairment functions to formulate an over-
all user experience model by conducting another round of
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subjective tests in which subjects evaluate video quality when
they experience combined artifacts. Finally, we demonstrate
applicability of the proposed model to videos up to 10 minutes,
longer than the average length of online videos.

The proposed user experience model does not need to access
the uncompressed video source and hence can be conveniently
incorporated into DASH client software to quantify user expe-
rience in real time. Moreover, the proposed model can be used
by a DASH service provider to monitor and control the qual-
ity of service, as well as optimize the DASH rate adaptation
algorithm.

Although the proposed DASH-UE model has considered
some video content features such as motion, there are other
factors related to the video content and the context of the
video viewed, such as the popularity of the video and the type
of device the video is watched on, which may impact user
experience. For example, it is possible that a viewer will have
a different level of tolerance with a video that is interesting
to him/her, versus some other less appealing videos. In the
future, we plan to study how these other factors will affect
user experience and extend our DASH-UE model to consider
them. Also, as suggested in the previous section, we plan to
study and determine user experience modeling for long videos,
including the unequal weight based approach suggested earlier.

Furthermore, another possible extension of this DASH-
UE model is to consider the saliency information of video
frames such that the important regions of a frame have
larger impact on user experience than non-important regions.
More specifically, we can first apply the techniques proposed
in [21]–[23] to detect the salient regions of video frames.
Subsequently, based on the saliency information, we can
develop a saliency-based video frame quality metric and then
replace the VQM metric in ILV function (equation (5)∼(8))
with this new metric. One can expect the modeling accuracy
will be improved by incorporating the saliency information
into the DASH-UE model.
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