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Abstract— We had introduced video caching techniques in the Radio
Access Network (RAN) in [1] as a way to reduce the need to bring
requested videos from Internet CDNs, thus reducing overall backhaul
traffic, improving video quality of experience and increasing network
capacity to support more simultaneous video requests. In this paper, we
investigate supplementing the resulting wireless cloud with a hierarchical
caching scheme, where the gateways in the Core Network (CN) also
have video caches. The hierarchical caching approach further improves
network capacity by enabling multiple cell sites to share caches at higher
levels of the hierarchy, thereby improving overall cache hit ratio, without
increasing the total cache size used. In addition, we exploit hierarchical
caching to better accommodate mobility, so that when a user with an
active video session moves from one cell to a neighboring cell, it is likely
that the video currently being downloaded is already in a cache within
the RAN or CN network associated with the new cell. To achieve the
goal of improving capacity and supporting mobility, we extend our User
Preference Profile (UPP) based caching policies [1] to accommodate the
hierarchical caching structure introduced in this paper. For all the videos
that miss the cache in any layer of hierarchy, we propose a scheduling
approach to allocate RAN and CN backhaul resources judiciously so
as to maximize the capacity of the wireless network. We extend our
discrete event statistical simulation framework developed in [1] to study
the performance of the proposed hierarchical caching approach. Our
simulation results show that using hierarchical caching can enhance cache
hit ratio by 24% and network capacity by up to 45% compared to
caching only in the RAN. Significant capacity gains are also observed
when additionally considering user mobility.

Index Terms—Hierarchical Caching, Wireless Radio Access
and Core Network, Wireless Network Capacity

I. INTRODUCTION

With the rapid growth in the number of smart phone and

tablet users year over year, it is expected that the global

mobile data traffic will grow by 92 percent annually from

2010 to 2015, of which up to two thirds is expected to be

video [2]. While Content Delivery Networks (CDNs) have

been recently enhanced to reduce Internet bandwidth con-

sumption and associated delay/jitter of online video, such

video consumed by mobile devices must additionally travel

through the wireless carrier Core Network (CN) and Radio

Access Network (RAN) before reaching the User Equipment

(UE). To facilitate this tremendous growth in mobile video

consumption without risking running out of wireless network

capacity and the associated problems of congestion and delay,

we recently introduced a video aware wireless cloud, where

the base stations in the RAN have video caches, with caching

policies which are aware of the video preferences of users in

cell sites [1]. We demonstrated that the proposed RAN caching

techniques can significantly increase network capacity while

reducing video latency and thereby improving user experience.

In this paper, we enhance the wireless video cloud, further

distributing the RAN caches to include network elements

within the CN, resulting in a hierarchical video caching

structure, but without increasing the total cache size used.

Adding caches within the CN can supplement RAN caches,

enable multiple cell sites share caches at higher levels of

the cache hierarchy, and help eliminate bandwidth bottlenecks

between the UE and CDN. The result can be improved overall

cache hit ratio, and increased network capacity to support

simultaneous video requests.

Additionally, the proposed hierarchical caching approach

can be beneficial to support for mobility, which is a challenge

for the RAN caching. When a user moves from one cell to

another cell, the associated RAN cache of the new cell may

not have the video, leading to a cache miss and the video to be

downloaded from the Internet CDNs, resulting in increased la-

tency and reduced capacity. However, in hierarchical caching,

proper caching of the video at the CN caches can help provide

seamless mobility.

In this paper, we extend our User Preference Profile (UPP)-

based caching policies introduced in [1] to support hierarchical

caching. Our policies also implicitly anticipate mobility and

prepare for the eventuality that the video downloads have

to be migrated to a neighboring cell cache. As with RAN

caching, even with hierarchical caching, some cache misses

are inevitable in each layer of the hierarchy, and each video

download needs to go through the backhaul of all network

elements in the hierarchy up to the level where the video is

found, so some backhaul traffic must be scheduled throughout

the network. We propose a scheduling approach that improves

the total number of concurrently admitted videos while main-

taining the user’s required Quality of Experience (QoE) by

first scheduling the videos based on the video codec’s Leaky

Bucket Parameters (LBP) [3] and assigning any spare backhaul

bandwidth using Linear Programming (LP) optimization. Our

simulation results show that the proposed hierarchical caching

approach, together with the scheduling technique, can improve

the capacity of the wireless network significantly over the

results that we presented in [1].

A. Related Work and Paper Outline

Significant amount of work has been done to develop CDNs

for the Internet [4][5]. As explained earlier, Internet CDNs,

and caching at Internet CDNs, do not address the problems of

latency and capacity for video delivery in wireless networks.

Recently, traffic off-loading to available Wi-Fi networks or

Femto cells, and providing incentives for peer-to-peer sharing,

have been proposed as ways to improve video QoE and

capacity in wireless networks [6][7]. However, the above
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techniques do not utilize the power of video caching, which

has traditionally proved to be very beneficial for Internet

CDNs. In [1], we proposed an approach to move video caching

to the edge of the wireless networks – at (e)NodeBs in RAN.

Since conventional CDN video caching techniques are not as

effective for smaller sized RAN caches, we proposed new

caching policies which are sensitized to user preferences in

corresponding cells. We demonstrated that RAN caching, to-

gether with the proposed RAN backhaul scheduling technique,

can significantly reduce congestion, and improve the capacity

of wireless networks to support concurrent video requests

while satisfying desired QoE. In this paper, we propose a

hierarchical caching approach, extending the RAN caching

approach in [1] to include caching also in CN elements.

The remainder of the paper is organized as follows. In

section II, we first review the wireless system architecture

and justify the applicability of the “cache hierarchy tree”

that we propose in this paper as a means to further improve

the capacity and provide mobility support. In section III, we

first introduce the hierarchical caching approaches and later

explain our hierarchical version of the caching policies that

we introduced in [1]. Subsequently, in section IV, we intro-

duce our video scheduling approach. Section V outlines our

simulation framework and experimental results demonstrating

the superior cache hit ratio and system capacity that can be

achieved using hierarchical caching vs. RAN-only caching and

scheduling techniques. We conclude the paper in section VI.

II. WIRELESS NETWORK ABSTRACTION

In this section, we first briefly review the system architecture

of 3G and 4G wireless networks. Subsequently, we introduce

hierarchical caching at different nodes in the wireless network

and abstract the wireless network with caches by using a tree

topology.

A. Wireless Network Architecture Overview
In the previous 3G wireless standards, e.g. 1xEV-DO and

UMTS, only limited radio functionality was placed in the

NodeB and the Radio Network Controller (RNC) was respon-

sible for resource management, controlling the NodeBs, as

well as session or connection setup. Every soft or hard han-

dover needed to go through the RNC. In such an architecture,

the requests first traversed through the NodeB to the RNC

and then from the RNC to the SGSN and GGSN and would

follow the same path in the reverse direction to the UE. No

inter-NodeB communication was in place, and the network

was circuit-switched oriented. A NodeB was homed to an

RNC and RNC was connected to a SGSN and so on. Fig.

1(a) shows an overview of the 3G architecture along with our

proposed caches in NodeBs, RNCs, and GGSNs. We do not

do any caching at the SGSNs.

In 3GPP Long Term Evolution (LTE) and System Archi-

tecture Evolution (SAE) wireless standard, the main data path

is from the Packet Data Gateway (PGW) to Service Gateway

(SGW) to eNodeB – i.e. a top down flow, although control

and minimal data transactions can be done between nodes

within the same level (e.g. between two eNodeBs or two

SGWs). From 3GPP release 6 to release 8 the functionality of

the RNC has been consolidated into the eNodeB containing

all the network-side radio functionality. SAE was developed

with the goal to accommodate the high capacity LTE radio

interface, optimize for packet-switched operation, improve the

experienced delay and support the higher user throughput

provided by the physical layer, along with inter-operability

with the other 3GPP and wireless standards [8][9].

In 4G, eNodeBs can be inter-connected over the X2 inter-

face, a high capacity interface designed in SAE for transferring

control information or UE’s data buffer during handover; here

no RNC is used. SAE supports handovers at the eNodeB level

over the X2 or S1 interface. Although, this X2 interface is

available for limited data transfer, it cannot be used for the

long term data transfer between two eNodeBs, so it cannot

be exploited for inter-cache data transfer; for this reason, we

assume that nodes at the eNodeB layer cannot share their

cache contents directly. Fig. 1(a) shows a high-level system

architecture for 4G along with our proposed caches located at

each eNodeB, SGW, and PGW. Mobility Management Entity

(MME) keeps track of UE locations in its service area and once

the UE first registers in the network, it allocates resource in

the eNodeB and SGW for the UE. The SGW is responsible for

relaying the data between eNodeB and PGW. A set of MMEs

and SGWs are assigned to serve a particular set of eNodeBs.

An eNodeB may connect to many MMEs and SGWs, for

instance if there is congestion or one of the elements cannot

be reached because the route is not available. However, each

UE will be served by only one MME and SGW at a time.

Because in the normal operation one eNodeB is connected to

one MME and SGW, without loss of generality, we simplify

our caching structure to a tree based hierarchy similar to the

one we propose for 3G. In the next sub-section, we discuss

our tree topology.

B. Tree Structure Abstraction and Video Request Flow

We construct a network that has a tree topology to model

data flow in a 3G or 4G network. In this tree structure, leaf

nodes (1st layer nodes) are (e)NodeBs where users attach. 2nd

layer nodes are the RNCs/SWGs, which do not have users

directly connected to them, but cover a group of (e)NodeBs

and their associated users. Similarly, 3rd layer nodes are

GGSN/PGW with RNC/SGWs attached. In this paper we limit

ourselves to a single GGSN/PGW (3rd layer node), which

forms the root node of the tree and is connected to the Internet

CDN via the Internet backhaul. The caches associated with the

1st, 2nd and 3rd layer nodes are referred to as the 1st, 2nd

and 3rd layer caches respectively. A video may be present

at the 1st, 2nd or 3rd layer caches, but is guaranteed to be

found in the Internet CDN connected to the backhaul of the 3rd

layer node. Fig. 1(c) shows an example tree architecture where

nodes of the tree represent the caches and edges represent the

backhaul links with bandwidth, Ci, which sets the upper bound

on the total number of concurrent video downloads possible

on the link, which we will discuss further in section IV.

Regardless of the caching policy used with this hierarchical

model, if a user requests a video, and the video is found in

the lower layer cache, the video is delivered from that cache

and the backhaul connecting to a higher layer node is kept

available for other downloads. If the request results in a cache

miss in the lower layer, then the request goes to the higher
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Fig. 1. Wireless system architecture and associated caches, (a) 3G Architecture (b) 4G Architecture (c) Hierarchical Cache Model

layer cache only if there is enough backhaul bandwidth to

accommodate the video download. Consequently, the finding

of a video in a lower layer cache results in lower latency and

higher capacity. More importantly, finding the video within

the wireless cloud helps us to lower the traffic in the backhaul

connecting the wireless cloud to the CDN (Internet backhaul).

In the next section, we explain the hierarchical caching policies

that achieve this.

III. CELL SITE AWARE HIERARCHICAL CACHING

POLICIES

In this section, we first explain the overall hierarchical

cache approach to improve the video cache hit ratio within

the wireless cloud as well as to provide support for mobility.

We next describe the design of our hierarchical UPP based

caching policies, including the required modifications to the

UPP based caching policies proposed in [1].

A. Hierarchical Caching Policies
An important property of hierarchical caching relates to

the amount of video redundancy in the caches of different

layers of the hierarchy, impacting cache hit ratio of users in a

cell, as well as providing support for mobility between cells.

Different cache hierarchy architectures have been proposed in

the literature [10]; such as Inclusive Cache Hierarchy where a

higher layer cache includes all of the videos that exist in the

associated lower layer caches conditioned upon the storage

availability of the higher layer cache, or Exclusive Cache

Hierarchy where a higher layer cache will not cache videos

that are present in the associated lower layer caches. Inclusive

cache hierarchy can be very effective to support mobility

between cells, whereas exclusive cache hierarchy can be more

effective to improve cache hit ratio of more static users. In

an inclusive cache hierarchy, a user traveling from cell site

A to cell site B while receiving a video stream, can continue

to receive the video almost seamlessly during the hand-off,

even if the video that is being watched is not found in the

cell site B cache, because the video can be found in the 2nd

layer cache that is connected to both A and B. In an exclusive

cache hierarchy, where the 2nd layer supplements the 1st layer

cache, the cache hit ratios of users in cells A and B will be

improved, as long as the mobility of users in A and B is low.

One problem with such caching schemes is that they require

extensive cache coordination; maintaining coherency between

caches may result in high levels of overhead.

In this paper, we propose a hybrid and partially distributed

hierarchical caching policy to increase cache hit ratio and

provide support for high mobility. In this approach, each

layer independently caches the video contents according to

its caching policy and the only coordination required is that

each node relays its Active User Set (AUS) information [1],

i.e. the active video users served by the node, whenever AUS

is updated, to its higher layer node in the cache hierarchy

tree. The AUS of the higher layer node is then defined as

the union of all AUS of the 1st layer nodes connected to

it. To further optimize for mobility, in this paper we use

the implied inclusivity of our hierarchical caching algorithms

to improve support for mobility. In other words, we do not

perform Exclusive Cache Hierarchy as explained earlier in this

sub-section.

In our proposed hierarchical UPP-based algorithm, each

cache in the cache hierarchy makes its decision independently,

and as a result, videos may be redundantly cached at multiple

layers in the cache hierarchy. This is inconsequential if the

assumption is that the cache size grows by a significant factor

for each layer as we get closer to the root node because the

redundant part of the cache will only be a small part of the

total cache. However, if the cache sizes are limited it becomes

more important to conserve space and an exclusive policy may

be needed. To further optimize for storage, it is possible to

remove the intersection of all the 1st layer caches, from the

2nd layer and 3rd layer caches, and so on.

We modified the caching policies studied in [1] to support

hierarchical caching described later in this section: Most

Popular Videos (MPV), Least Recently Used (LRU), Reactive-

User Preference Profile (R-UPP), and Proactive-User Prefer-

ence Profile (P-UPP). In the RAN-only model – where only

(e)NodeBs have caches – P-UPP and R-UPP cache candidates

are calculated based on the AUS of the individual (e)NodeBs.

The reactive caching policies, i.e. LRU or R-UPP, fetch the

video from the video source if there is a cache miss and cache

it if the conditions of the replacement policy are met. If there

is a cache miss in the 1st layer cache, the request propagates

to the 2nd layer cache, up the tree until there is a cache hit or it

reached the root node of the hierarchy. Subsequently, the video

is fetched, and while traversing down the tree hierarchy, each

cache in the hierarchy chooses whether to cache the content

based on its cache replacement policy. In the next section,

we first briefly discuss changes required for the traditionally

used MPV and LRU caching policies to support the proposed

hierarchical caching approach. Next we describe in details the

new hierarchical R-UPP and P-UPP caching algorithms.
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B. Cache Policies within the cache hierarchy

1) Hierarchical MPV: MPV is a proactive caching policy,

which caches the “most popular videos” using the (nation-

wide) video popularity distribution [11]. In Hierarchical MPV,

each layer in the cache hierarchy caches the same “most

popular videos” to the degree the cache size permits.

2) Hierarchical LRU: LRU [10] is a reactive caching

policy that caches contents as they are being fetched from

the backhaul following a cache miss. If the cache is full,

LRU replaces the video in the cache that has been used least

recently. Hierarchical LRU is a straight-forward extension of

the single-layer LRU, but it is noteworthy that this scheme

has a built-in exclusivity mechanism. Consider a video request

that occurs frequently at all (e)NodeBs associated with a 2nd

layer cache: Initially the video is being fetched by a user at a

single (e)NodeB which results in the video being cached at that

(e)NodeB and in the 2nd layer cache. When a user at another

(e)NodeB requests the same video, it is delivered directly from

the 2nd layer cache and stored in that new (e)NodeB’s cache as

well. Eventually the video will be stored at all the (e)NodeBs

and all future user requests for that video will be served from

the 1st layer caches, i.e. the 2nd layer cache will no longer see

any requests for that video and it will eventually be evicted

by the LRU policy at the 2nd layer to free up the space for

other videos.

3) Hierarchical R-UPP: R-UPP is a reactive cache policy

which replaces the videos based on the UPPs of the active

users in a cell [1]. Upon a cache miss, R-UPP fetches the

video from the backhaul and caches it if the UPP of the

AUS indicates it is more likely to be requested again than any

video currently cached. When applying R-UPP to hierarchical

caching, similarly to LRU, if the request to the 1st layer cache

is a cache miss, the request is progressively passed to the next

layer in the cache hierarchy tree until either there is a cache hit

or it has reached the root of the tree meaning the video needs

to be fetched from the Internet CDN. While the fetched video

is traversing towards the UE in the hierarchy tree, each cache

on the way to the 1st layer cache decides whether to cache

the video. The replacement policy for this algorithm has been

explained in [1]: After each new video request, we calculate

the request probability, PR, of the videos in the cache as well

as that of the newly requested video. Using these probabilities

we form the Least Likely Request (LLR) set, which is the

smallest set of videos that need to be evicted to fit in the newly

requested video and may consist one or multiple cache entries

depending on the size of the requested video. Then we replace

the LLR set with the requested video only if the PR of the new

video is higher than the aggregate PR of the LLR. The details

of the hierarchical R-UPP caching algorithm are shown below:

AUS(Li,j) represents the AUS that is associated with the jth

cache in the ith layer. UPP (AUS(Li,j)) is the aggregate UPP

of the AUSs associated with the cache Li,j . Based on our

definition of the cache tree structure, each cache in the 1st

layer is associated with one cache in the 2nd layer and one

cache in the 3rd layer. We use Li,L1,j
to refer to the ith layer

cache that is associated with the jth 1st layer cache. In the

cellular network, there are three layers of cache (n = 3) as

explained in section II.A.

Hierarchical R-UPP
For each new request for Video V to L1,j (cache of the jth eNodeB)
Initialize Counter to zero
For i = 1 to n (each layer in the cache hierarchy)

If V ∈ Li,L1,j
Schedule download of V from Li,L1,j

Counter = i
End If, End For
If Counter == 0 (V not found in any cache)

Schedule download of V from the Internet CDN
Counter = n + 1

End If
If download scheduling successful for i = Counter− 1 down to 1

If there is space in cache Li,L1,j

Update cache: Li,L1,j
= Li,L1,j

+ V
Else

Find UPP for cache Li,L1,j
based on AUS(Li,L1,j

)
Calculate PR for V and the videos in Li,L1,j

and generate LLRi

If PR(LLRi) > PR(V )
Do not cache V

Else
Li,L1,j

= Li,L1,j
+ V − LLRi

End If, End If, End For, End If

4) Hierarchical P-UPP: Hierarchical P-UPP caching algo-

rithm is based on the P-UPP cache policy [1], which pre-loads

the cache with the videos that are most likely to be requested

given the UPP of the AUS of the associated (e)NodeBs. When

the AUS of any of the (e)NodeBs change due to user arrival or

departure (including user mobility), video request probabilities

are recalculated as proposed in [1], and the cache contents

are updated with the videos belonging to the Most Likely

Requested set, MLR [1]. MLR is a subset of videos, with

the highest aggregate request probability, that fits into the

cache. In order to avoid excessive update overhead, each cache

replacement can be associated with a probability threshold

(Tε), so that the replacement only takes place if there is a

significant improvement in request probability. The algorithm

for P-UPP is shown below:

Hierarchical P-UPP
Cache Update:
If AUS changed for the ith (e)NodeB, L1,i

Find UPP of L1,i and any higher layer cache in the path to L1,i

Calculate PR based on UPP (AUS(Li,L1,j
))∀i = 1, .., n

Calculate MLRi,L1,j
and LLRi,L1,j

∀i = 1, .., n
For each video k in sorted list of MLRi,L1,j

set, MLRi,L1,j
(k)

LLRi,L1,j
(t): subset of LLR videos with least PR to be

evicted from cache to fit MLRi,L1,j

if PR(MLRi,L1,j
(k))−P

PR(LLRi,L1,j
(t)) > Tε

Update the cache with MLRi,L1,j
(k) and evict LLRi,L1,j

(t);

Update MLRi,L1,j
and LLRi,L1,j

;

End If, End For, End If
Video Request:
Initialize Counter, i to zero

If new Video Request V to the cache of the jth (e)NodeB, L1,j

For i =1 to n (each layer in the cache hierarchy)

If V ∈ ith Layer Cache associated with cache L1,j , Li,L1,j

Download V from Li,L1,j

Counter = i
Return V,Counter

End If, End For
If V not found in any cache, Counter > n

download V from the Internet CDN
End If

Although we showed in [1] that UPP based cache policies,

R-UPP and P-UPP, result in higher cache hit ratios than

conventional MPV and LRU policies, still all videos not found

in the (e)NodeB caches need to be brought from a higher layer

cache or from the Internet CDNs, traversing through the CN

and RAN backhaul. For all the videos that cause a miss in
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the RAN caches, including compulsory misses (i.e. the first

time a reactive cache accesses a video) and cache maintenance

traffic, we propose a scheduling approach that coordinates

with the requesting video clients and uses backhaul resources

judiciously to increase the overall capacity of the system.

IV. SCHEDULING APPROACH FOR CAPACITY AND DELAY

Whenever a video is downloaded from one layer of the hi-

erarchy to the next, the successful scheduling of the download

in that layer is conditioned upon the availability of sufficient

backhaul bandwidth; otherwise the request will be blocked.

LBP [3] consist of N 3-tupples (R, B, F) corresponding to

N sets of transmission rates and buffer size parameters for a

given bit stream and are generated based on the video coding

structure and allocated channel rate, and are used both in this

paper and [1] for allocating the minimum required rate for

each video. This rate corresponds to the maximum acceptable

initial delay (a QoE parameter) that a user can tolerate, and if

it cannot be satisfied because of lack of available bandwidth

in the backhaul of any layer of the hierarchy, the request is

blocked. In addition, to avoid stalling, the scheduling algo-

rithm needs to ensure that the download rate does not decrease

below this minimum rate any time during the transmission; for

this reason, the scheduler refrains from admitting new video

request if there is not enough spare bandwidth to maintain

the minimum required rate of the scheduled requests. Further,

once all the requested videos have been scheduled according

to the LBPs, there may parts of the network operating at less

than 100% capacity for a period of time. This spare capacity

can be used to accelerate the ongoing downloads with the

intent to finish the downloads faster and free up bandwidth

for later use. To utilize the spare capacity, we introduce flow

maximization using linear programming. The idea is to think

of each download (e.g. between 2nd layer node and eNodeB,

or between 3rd and 2nd layer nodes) as being part of a flow

that spans the distance between the video source and the end

user. For instance in Fig. 1(c), the first video request, V1, spans

all the way from the Internet CDN to the 1st layer cache, and

the minimum allocated rate is based on the maximum delay

that a user can tolerate and the available bandwidth at each

level of the hierarchy. The same rate, R1, has to be allocated

for all the backhauls that V1 should be downloaded through.

The 2nd video request, V2, results in a cache hit in the 3rd

layer so the flow (video download) only spans from 3rd layer

to 1st layer. The bandwidth of the ith flow is identified by bi

and subsequently maximized under the constraint that the sum

of the bandwidth of all scheduled flows that go through each

backhaul must not exceed its capacity limits, Cn, and should

be greater than the initially scheduled (minimum) rates, ri:

Maximize:
∑

i

bi

Subject to: bi ≥ ri∀i
∑

i∈Fn

bi ≤ Cn, n = 1, ..., N

This optimization problem is solved for the entire network,

so all caches and backhauls are numbered from 1 to N ,

where N is the total number of nodes in the network. Fn

is the set of flows that go through the nth backhaul and

ri is the minimum allocated rate of the ith video request.

This optimization is being executed only after all the initial

video bandwidth assignments (ri) were decided based on LBP.

Meaning that after any new video request, we first make sure

that the new video request can be admitted based on its LBP

and minimum required rate of all existing video downloads

(rate obtained using LBP), and then we run the scheduling

algorithm again to further optimize the rate by using the spare

capacity. Unlike the distributed scheduling algorithm that we

proposed in [1], with LP reallocation of spare capacity we

can relax the minimum rate requirements during peak load

periods by asking the users (mobile clients) to recalculate

their minimum rate requirements. This can be done because

the buffer levels during the download sessions may be higher

than anticipated at the time of initial scheduling. Due to space

constraints, this method is not explored further in this paper.

V. SIMULATION FRAMEWORK AND RESULTS

We extended the MATLAB Monte Carlo simulation frame-

work that was developed in [1] to assess the benefits of

hierarchical caching and present the results in this section. As

explained in section III.B, we model the network as a tree and

assume a backhaul bandwidth of 100Mbps between eNodeB

and SGW, 200Mbps between SGW and PGW, and 220Mbps

between PGW and the Internet CDN. The above selection of

backhaul bandwidths, in particular between PGW and Internet

CDN, while lower than in a real carrier network, allows us

to study a fully loaded network with only few eNodeBs and

SGWs instead of a real network with hundreds of such nodes.

We assume a network consisting of 9 nodes: 2 sets of 3

eNodeBs are connected to 2 SGWs which are connected to

one PGW. The size of the 2nd layer cache is 3 times of the

size of the 1st layer cache and the size of the 3rd layer cache

is 10 times that of the 1st layer cache. The total number of

video requests simulated per trial is 100,000 and the requests

originate uniformly from the users of all eNodeBs. The total

number of videos available for download is 20,000, distributed

uniformly across 250 video categories, and following a Zipf

popularity distribution [11] with parameter of -0.8. The video

duration is exponentially distributed with mean of 8 minutes

and truncated to a maximum of 30 minutes and a minimum

of 2 minutes. We assume the video codec bit rate is uniformly

distributed between 200kbps (QVGA quality) and 2Mbps (HD

quality). The simulation assumes 5000 potential mobile users

with Poisson arrival and departure with mean inter-arrival time

of 100 seconds and user active time of 2700 seconds (time the

user is present whether actively downloading video or not).

Video requests are generated independently per active user

and follow a Poisson process with mean of 480 seconds. For

all the simulations we assume the same total cache size for

hierarchical and RAN-only caches but for the hierarchical case

the cache has been distributed across three layers and for the

RAN-only only across the 1st layer caches. All variables are

randomly generated for each simulation trial and all results

presented here include 4 trials.

Fig. 2(a) shows the performance of non-hierarchical (MPV,

LRU, R-UPP, P-UPP) and hierarchical (H-MPV, H-LRU, H-

R-UPP, H-P-UPP) cache policies in terms of cache hit ratio

achieved, for different total cache sizes of 50, 100, and
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Fig. 2. Performance of the hierarchical caching policies: (a) Cache Hit Ratio vs. Cache Size (b) Mean backhaul BW required per layer of the hierarchy (c)
Capacity vs. cache policy with no mobility (d) Capacity vs. cache policy with mobility

150Gbytes. This simulation assumes users do not move from

one cell site to another (no mobility). Also, no bandwidth

limitation is in effect. In all cases hierarchical caching results

in higher overall cache hit ratio compared to caching only

at the edge of the RAN although the total cache size is

unchanged. For cache size of 150Gbytes, H-P-UPP and H-

R-UPP both result in cache hit ratios of 0.82, about 24

and 22 percentage point better than the RAN-only versions

respectively.

Fig. 2(b) shows the mean backhaul bandwidth required in

RAN, CN, and Internet backhaul when the total cache size

is 150Gbytes. The mean required RAN bandwidth for the H-

P-UPP is 45Mbps while for the P-UPP it is 30Mbps. The

required CN backhaul bandwidth is the same both for H-

P-UPP and P-UPP at 90Mbps, while the required Internet

backhaul bandwidth is 74 and 180 Mbps for H-P-UPP and

P-UPP respectively. We see similar trends for the other cache

policies: hierarchical caching results in significantly increased

RAN backhaul traffic, but significantly lower Internet backhaul

traffic (less data fetched from the CDN), which should result

in lower operating costs for the network operator.

Next, we quantify the advantage of caching both at the

RAN and CN compared with caching only at the RAN in

terms of capacity of the wireless network when considering

the bandwidth limitations described in the beginning of the

section. Here, capacity is defined as the maximum number of

concurrent video sessions that result in a blocking probability

of less than 1% [1]. Fig. 2(c) compares capacity of the

hierarchical and RAN-only cache policies when the total cache

size is 150Gbytes. With the chosen bandwidth configuration,

hierarchical caching performs better than RAN-only caching

because it addresses congestion in the links between 2nd

layer and 3rd layer nodes and 3rd layer node and CDN.

For example, network capacity improves by 21% and 30%

using hierarchical P-UPP and R-UPP policies compared with

RAN-only P-UPP and R-UPP respectively. Capacity using

the hierarchical LRU and MPV is improved by 9% and 8%

respectively compared to RAN-only versions.

Finally we study the effect of mobility where, in addition to

having users added to and removed from cell sites, the users

move between cell sites while continuing with their video

downloads. In our simulation, cell site migration follows a

Poisson process with mean active cell time of 100 seconds –

i.e. the mean time a user stays in a cell site before moving

to another cell site. An ongoing video session is blocked

(terminated) if the eNodeB that the UE migrates to cannot

support the new session. Fig. 2(d) compares hierarchical

caching with RAN-only caching under mobility condition.

We did not present capacity results for the RAN-only P-

UPP because this configuration is not suitable for mobility

in its native form (i.e. without exchanging neighbor (e)NodeB

AUS). From Fig. 2(d), we observe that UPP based hierarchical

policies perform significantly better in the case of mobility:

hierarchical R-UPP performs 47% better than the RAN-only

R-UPP.

VI. CONCLUSION

In this paper, we proposed hierarchical caching of video

contents in the CN to supplement the caches at the edge of

the RAN. We extended caching policies proposed in [1] to

support hierarchical caching. Our simulation results show that

the hierarchical caching of videos in the CN to supplement

RAN micro-caching can significantly decrease the required

Internet backhaul bandwidth while maintaining the end user’s

video QoE leading to a significant capacity increase in existing

networks. In the future, we plan to extend our approach to

consider bandwidth constraints in the RAN RF links.
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